SCBS160C - DECEMBER 1992 - REVISED MAY 1997

GND

2D7

2D8

2LE

28

27

26

25

 Members of the Texas Instruments Widebus™ Family State of the Art EBIC UBIM BiCMOS Design 	SN54ABT16373A WD PACKAGE SN74ABT16373A DGG OR DL PACK (TOP VIEW)			
 State-of-the-Art EPIC-IIB[™] BiCMOS Design Significantly Reduces Power Dissipation 	10E		1LE	
 Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17 	1Q1 [1Q2 [2 47] 1D1] 1D2	
• Typical V _{OLP} (Output Ground Bounce)	GND [1Q3 [4 45	GND 1D3	
< 0.8 V at V _{CC} = 5 V, T _A = 25°C • High-Impedance State During Power Up and Power Down	1Q4 [V _{CC} [6 43	1D4 V _{CC}	
 Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise 	1Q5 [1Q6 [8 41 9 40] 1D5] 1D6	
 Flow-Through Architecture Optimizes PCB Layout 	GND [1Q7 [1Q8 [11 38	GND 1D7 1D8	
 High-Drive Outputs (–32-mA I_{OH}, 64-mA I_{OL}) 	2Q1 [13 36] 2D1	
 Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink 	2Q2 [GND [15 34] 2D2] GND	
Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package	2Q3 [2Q4 [2D3 2D4	
Using 25-mil Center-to-Center Spacings	V _{CC} [2Q5 [] V _{CC}] 2D5	
description	2Q6 [2D6	

The 'ABT16373A are 16-bit transparent D-type latches with 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

These devices can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

GND

2Q7 🛛

2Q8

20E

21

22

23

24

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT16373A is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT16373A is characterized for operation from –40°C to 85°C.

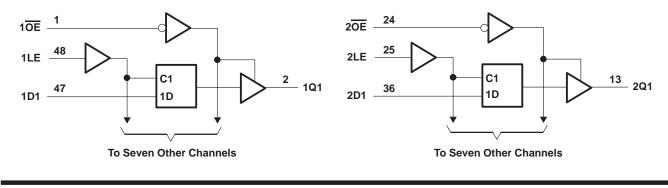
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated

SCBS160C - DECEMBER 1992 - REVISED MAY 1997


FUNCTION TABLE (each 8-bit section) INPUTS OUTPUT Q OE LE D L Н Н Н L н L L L Х L Q_0 Н Х Х Ζ

logic symbol[†]

			_	
1 <mark>0E</mark>	1	1EN		
1LE	48	C3		
20E	24	2EN		
	25			
2LE		C4		
1D1	47	3D 1 ▽	2	1Q1
1D2	46		3	1Q2
1D3	44	-	5	1Q3
1D4	43		6	1Q4
1D5	41	-	8	1Q5
1D6	40	-	9	1Q6
1D7	38	-	11	1Q7
1D8	37	-	12	1Q8
2D1	36	4D 2 ⊽	13	2Q1
2D2	35		14	2Q2
2D3	33		16	2Q3
2D4	32		17	2Q4
2D5	30		19	2Q5
2D6	29		20	2Q6
2D7	27		22	2Q7
2D8	26		23	2Q8
			J	

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCBS160C - DECEMBER 1992 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range applied to any output in the high or power-off state, V_O Current into any output in the low state, I_O : SN54ABT16373A SN74ABT16373A Input clamp current, I_{IK} ($V_I < 0$) Output clamp current, I_{OK} ($V_O < 0$) Package thermal impedance, θ_{JA} (see Note 2): DGG package DL package	-0.5 V to 7 V -0.5 V to 5.5 V
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

recommended operating conditions (see Note 3)

			SN54ABT	16373A	SN74ABT1	16373A	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage	4.5	5.5	4.5	5.5	V	
VIH	High-level input voltage	2		2		V	
VIL	Low-level input voltage		0.8		0.8	V	
VI	Input voltage	0	VCC	0	VCC	V	
ЮН	High-level output current			-24		-32	mA
IOL	Low-level output current			48		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

SCBS160C - DECEMBER 1992 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST OO	NDITIONS	Т	A = 25°0	;	SN54ABT	16373A	SN74ABT1	16373A	UNIT	
r	ARAMETER	TESTCO	NDITIONS	MIN	TYP [†]	MAX	MIN	MAX	MIN	MAX	UNIT	
VIK		V _{CC} = 4.5 V,	lj = -18 mA			-1.2		-1.2		-1.2	V	
		V _{CC} = 4.5 V,	I _{OH} = -3 mA	2.5			2.5		2.5			
Vari		V _{CC} = 5 V,	I _{OH} = -3 mA	3			3		3		V	
VOH		V _{CC} = 4.5 V	I _{OH} = -24 mA	2			2				v	
		VCC = 4.3 V	$I_{OH} = -32 \text{ mA}$	2*					2			
VOL		V _{CC} = 4.5 V	I _{OL} = 48 mA			0.55		0.55			V	
VOL		VCC = 4.3 V	I _{OL} = 64 mA			0.55*				0.55	v	
V _{hys}				100						mV		
II.		$V_{CC} = 0$ to 5.5 V V _I = V _{CC} or GN				±1		±1		±1	μΑ	
IOZPU	‡ر	$V_{CC} = 0 \text{ to } 2.1 \text{ V}$ $V_{O} = 0.5 \text{ V to } 2.1 \text{ V}$	V, 7 V, OE = X			±50		±50		±50	μA	
IOZPE) [‡]	$V_{CC} = 2.1 V to$ $V_{O} = 0.5 V to 2.000 V_{O}$	0, 7 V, OE = X			±50		±50		±50	μA	
IOZH		$V_{CC} = 2.1 \text{ V} \text{ to}$ $V_{O} = 2.7 \text{ V}, \overline{\text{OE}}$				10		10		10	μΑ	
I _{OZL}		$V_{CC} = 2.1 \text{ V} \text{ to}$ $V_{O} = 0.5 \text{ V}, \overline{\text{OE}}$				-10		-10		-10	μΑ	
l _{off}		$V_{CC} = 0, V_{I} \text{ or } V_{I}$	/ _O ≤ 4.5 V			±100				±100	μΑ	
ICEX	Outputs high	V _{CC} = 5.5 V,	V _O = 5.5 V			50		50		50	μΑ	
ΙΟ§		V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-180	-50	-180	-50	-180	mA	
	Outputs high					2		2		2		
ICC	Outputs low	V _{CC} = 5.5 V, I _O V _I = V _{CC} or GN				85		85		85	mA	
	Outputs disabled					2		2		2	\square	
∆ICC	T	V _{CC} = 5.5 V, Or Other inputs at V	ne input at 3.4 V, √ _{CC} or GND			1.5		1.5		1.5	mA	
Ci		V _I = 2.5 V or 0.5	5 V		3.5						pF	
Co		V _O = 2.5 V or 0.	.5 V		9.5						рF	

* On products compliant to MIL-PRF-38535, this parameter does not apply.

[†] All typical values are at $V_{CC} = 5$ V.

[‡] This parameter is characterized, but not production tested.

§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

 \P This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

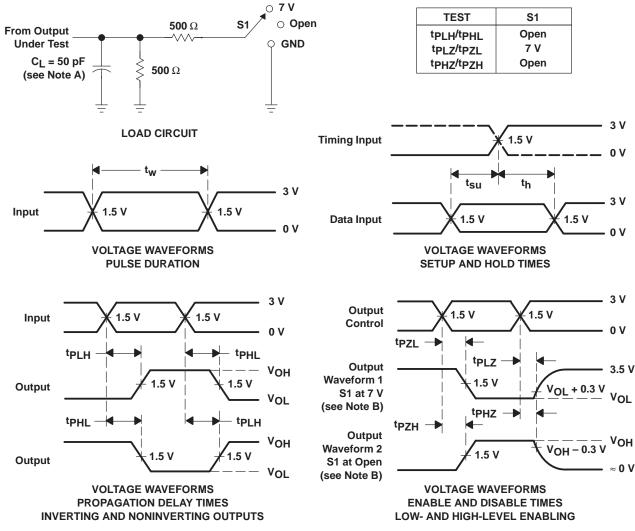
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

		V _{CC} = 5 V, T _A = 25°C [#]		SN54ABT16373A		SN74ABT16373A		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
tw	Pulse duration, LE high	3.3		3.3		3.3		ns
t _{su}	Setup time, data before LE \downarrow	1.5		2.4		1.5		ns
t _h	Hold time, data after LE \downarrow	1		2.2		1		ns

[#] These values apply only to the SN74ABT16373A.

SCBS160C - DECEMBER 1992 - REVISED MAY 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)


				SN54	ABT163	73A		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V(Tj	CC = 5 V A = 25°C	l, ;	MIN	МАХ	UNIT
			MIN	TYP	MAX	1		
^t PLH	D	Q	1.4	3.7	5.3	1.4	6.5	ns
^t PHL	D	Q	2	4	5.4	2	6.5	115
^t PLH	LE	Q	1.7	4.1	5.7	1.7	7	ns
^t PHL	LL	Q	2.3	4.3	5.6	2.3	6.3	115
^t PZH	OE	Q .	1.1	3.4	5	1.1	6.4	ns
^t PZL	ÛE		1.5	3.5	4.9	1.5	5.8	115
^t PHZ	ŌĒ	Q	2.4	5.1	7.1	2.4	8.3	ns
^t PLZ	UE	Q	1.6	4.4	6.3	1.6	8	115

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

				SN74	ABT163	573A		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	Vo Тį	CC = 5 V A = 25°C	/, ;	MIN	МАХ	UNIT
			MIN	TYP	MAX			
tPLH	D	Q	1.4	3.7	5.3	1.4	6.3	ns
^t PHL	D	×	2	4	5.4	2	6.2	115
^t PLH	LE	Q	1.7	4.1	5.7	1.7	6.7	ns
^t PHL	LL	Q	2.3	4.3	5.6	2.3	6.1	115
^t PZH	OE	Q		3.4	5	1.1	6.1	ns
^t PZL	ÛE	4	1.5	3.5	4.9	1.5	5.6	115
^t PHZ	ŌĒ	Q	2.4	5.1	7.1	2.4	8.1	ns
tPLZ	UE	Q	1.6	4.4	5.8	1.6	6.5	115

SCBS160C - DECEMBER 1992 - REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.

D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

W TEXAS

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9320001QXA	ACTIVE	CFP	WD	48	1	TBD	A42 SNPB	N / A for Pkg Type
74ABT16373ADGGRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74ABT16373ADGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT16373ADGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT16373ADL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT16373ADLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT16373ADLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT16373ADLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SNJ54ABT16373AWD	ACTIVE	CFP	WD	48	1	TBD	A42 SNPB	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

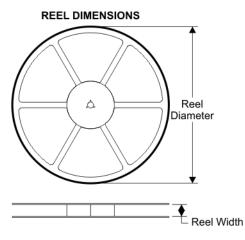
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

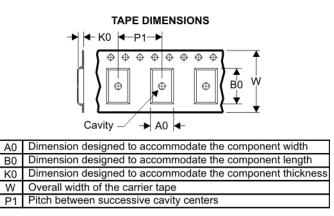
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

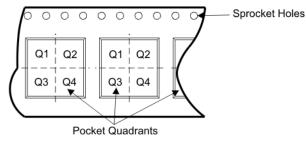
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

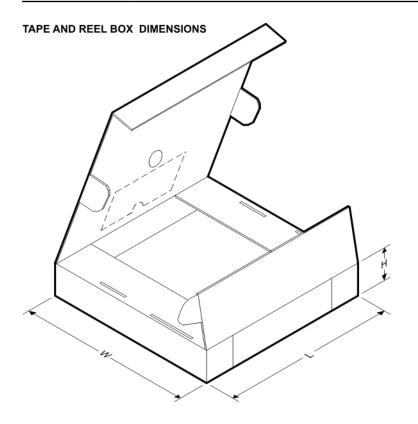

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL BOX INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

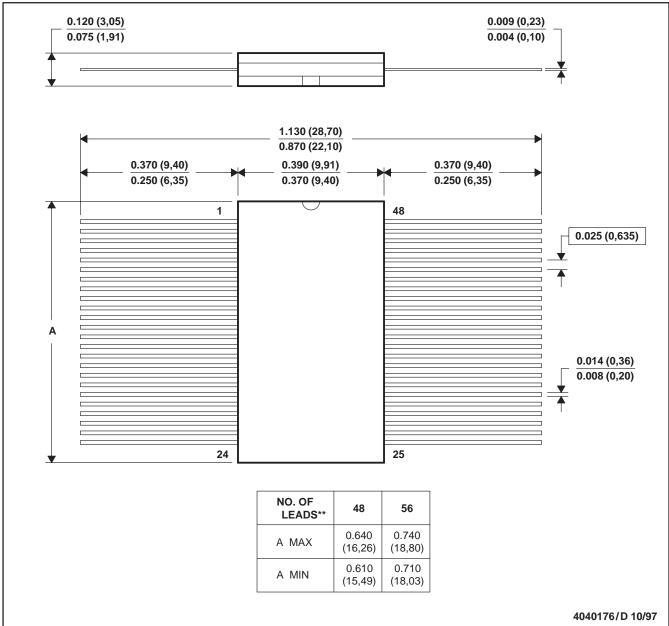


Device	Package	Pins	Site	Reel Diameter (mm)	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ABT16373ADGGR	DGG	48	SITE 41	330	24	8.6	15.8	1.8	12	24	Q1
SN74ABT16373ADLR	DL	48	SITE 41	330	32	11.35	16.2	3.1	16	32	Q1

PACKAGE MATERIALS INFORMATION

4-Oct-2007

Device	Package	Pins	Site	Length (mm)	Width (mm)	Height (mm)
SN74ABT16373ADGGR	DGG	48	SITE 41	346.0	346.0	41.0
SN74ABT16373ADLR	DL	48	SITE 41	346.0	346.0	49.0


MECHANICAL DATA

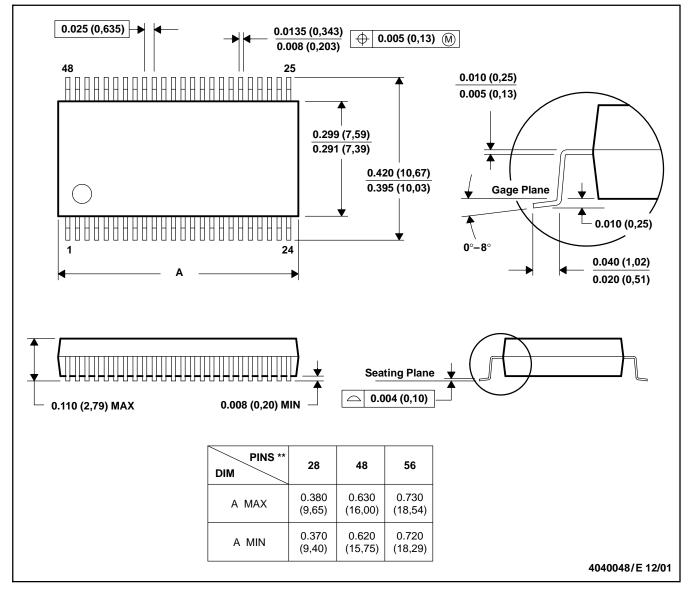
MCFP010B - JANUARY 1995 - REVISED NOVEMBER 1997

CERAMIC DUAL FLATPACK

WD (R-GDFP-F**)

48 LEADS SHOWN

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only
 - E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA
 - GDFP1-F56 and JEDEC MO-146AB


MECHANICAL DATA

MSSO001C - JANUARY 1995 - REVISED DECEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

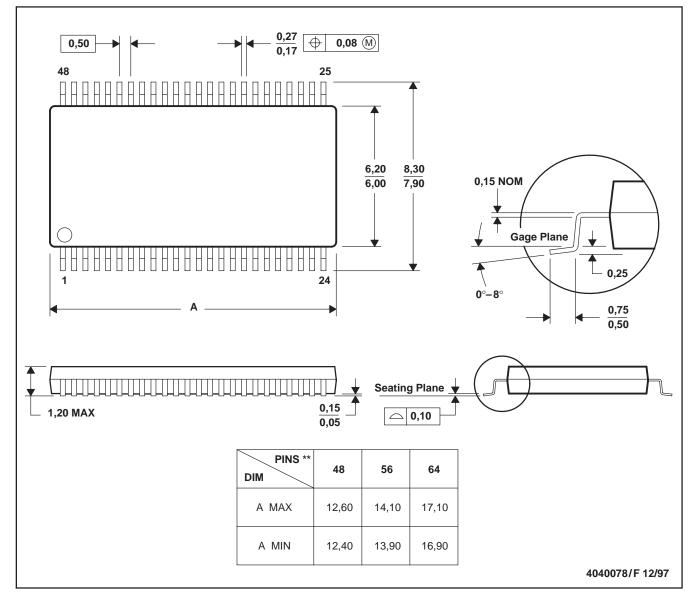
DL (R-PDSO-G**)

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
Low Power Wireless	www.ti.com/lpw	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9