74ALVCH162601

18-bit universal bus transceiver with 30 Ω termination resistor; 3-state

Rev. 2 — 13 August 2018

Product data sheet

1. General description

The 74ALVCH162601 is an 18-bit universal transceiver featuring non-inverting 3-state bus compatible outputs in both send and receive directions. Data flow in each direction is controlled by output enable (OEAB and OEBA), latch enable (LEAB and LEBA) and clock (CPAB and CPBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is HIGH. When LEAB is LOW, the A data is latched if CPAB is held at a HIGH or LOW logic level. If LEAB is LOW, the A-bus data is stored in the latch/flip-flop on the LOW-to-HIGH transition of CPAB. When OEAB is LOW, the outputs are active. When OEAB is HIGH, the outputs are in the high-impedance state. The clocks can be controlled with the clock-enable inputs (CEBA and CEAB).

Data flow for B-to-A is similar to that of A-to-B but uses OEBA, LEBA and CPBA.

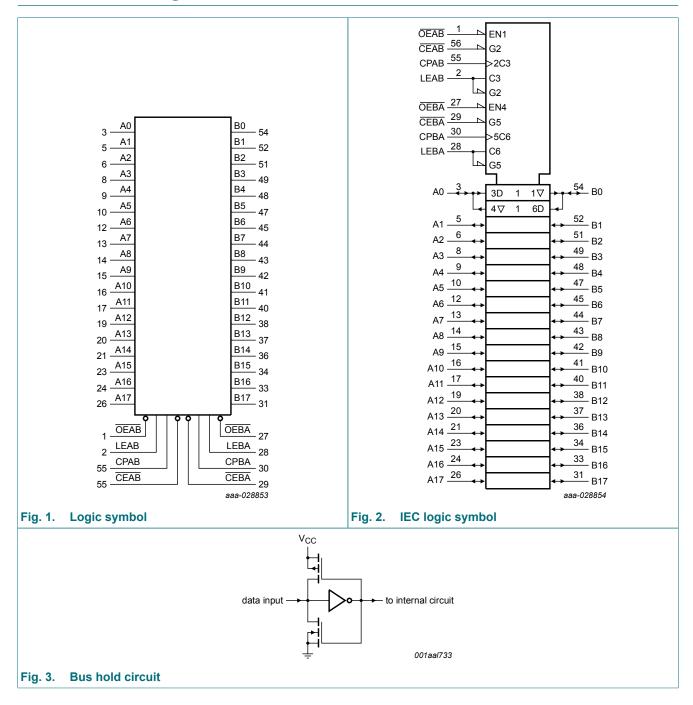
To ensure the high impedance state during power up or power down, $\overline{\text{OEBA}}$ and $\overline{\text{OEAB}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

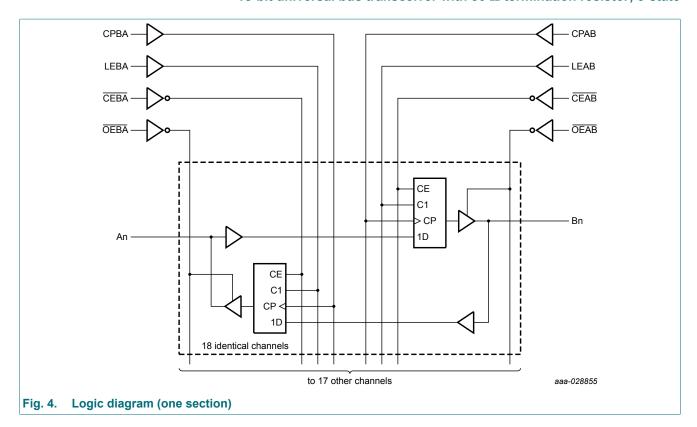
The 74ALVCH162601 is designed with 30 Ω series resistors in both HIGH or LOW output stage.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

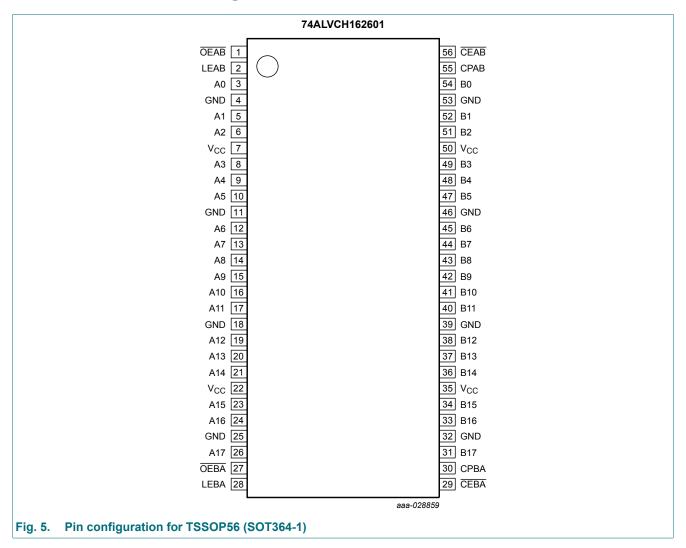
2. Features and benefits

- CMOS low power consumption
- MultiByte flow-through standard pin-out architecture
- · Low inductance multiple V_{CC} and GND pins for minimum noise and ground bounce
- Direct interface with TTL levels
- Bus hold on data inputs
- Integrated 30 Ω termination resistors.
- · Complies with JEDEC standards:
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8B/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM ANSI/ESDA/JEDEC JS-001 exceeds 2000 V
 - CDM JESD22-C101E exceeds 1000 V


3. Ordering information


Table 1. Ordering information

Type number	Package									
	Temperature range	Name	Description	Version						
74ALVCH162601DGG	-40 °C to +85 °C		plastic thin shrink small outline package; 56 leads; body width 6.1 mm	SOT364-1						


4. Functional diagram

5. Pinning information

5.1. Pinning

5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17	3, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26	data inputs/outputs
B0, B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B14, B15, B16, B17	54, 52, 51, 49, 48, 47, 45, 44, 43, 42, 41, 40, 38, 37, 36, 34, 33, 31	data outputs/inputs
OEAB, OEBA	1, 27	A to B / B to A output enable inputs (active LOW)
LEAB, LEBA	2, 28	A to B / B to A latch enable inputs (active HIGH)
CPBA, CPAB	30, 55	B to A / A to B clock inputs (active HIGH)
CEBA, CEAB	29, 56	B to A / A to B clock enable inputs (active LOW)
GND	4, 11, 18, 25, 32, 39, 46, 53	ground (0 V)
V _{CC}	7, 22, 35, 50	supply voltage

6. Functional description

Table 3. Function selection [1] [2]

Operating mode	Inputs	Inputs							
	CEAB	OEAB	LEAB	СРАВ	An	Bn			
Disabled	X	Н	X	X	Х	Z			
Transparent	X	L	Н	X	Н	Н			
	X	L	Н	X	L	L			
Hold	Н	L	L	X	Х	NC			
Clock data & Display	L	L	L	↑	h	Н			
	L	L	L	1	I	L			
Hold data & Display	L	L	L	Н	Х	NC			
	L	L	L	L	X	NC			

^[1] A-to-B data flow is shown; B-to-A flow is similar but uses $\overline{\text{CEBA}}$, $\overline{\text{OEBA}}$, LEBA, and CPBA.

^[2] H = HIGH voltage level;

h = HIGH voltage level one set-up time prior to the enable or clock transition;

L = LOW voltage level;

I = LOW voltage level one set-up time prior to the enable or clock transition;

X = don't care;

NC = no change

^{↑ =} LOW-to-HIGH enable or clock transition;

Z = high-impedance OFF-state.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
VI	input voltage	[1]	-0.5	+4.6	V
Vo	output voltage	[1]	-0.5	V _{CC} + 0.5	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
I _{OK}	output clamping current	$V_O > V_{CC}$ or $V_O < 0 V$	-	±50	mA
I _{O (sink/source)}	output sink or source current	$V_O = 0 V \text{ to } V_{CC}$	-	±50	mΑ
I _{CC}	supply current		-	100	mA
I _{GND}	ground current		-100	-	mΑ
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$ [2]	-	600	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage	for low-voltage applications	1.2	2.5	3.6	V
		for maximum speed performance at C _L = 30 pF	2.3	3.3	2.7	V
		for maximum speed performance at C _L = 50 pF	3.0	2.4	3.6	V
VI	input voltage		0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature	in free air	-40	-	+85	°C
Δt/ΔV	input transition rise and	V _{CC} = 2.3 V to 3.0 V	0	-	20	ns/V
	fall rate	V _{CC} = 3.0 V to 3.6 V	0	-	10	ns/V

^[2] For TSSOP56 packages: above 55 °C derate linearly with 8 mW/K.

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions. $T_{amb} = -40$ °C to +85 °C; Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ [1]	Max	Unit
V _{IH}	HIGH-level input	V _{CC} = 2.3 to 2.7 V	1.7	1.2	-	V
	voltage	V _{CC} = 2.7 to 3.6 V	2.0	1.5	-	V
V_{IL}	LOW-level input	V _{CC} = 2.3 to 2.7 V	-	1.2	0.7	V
	voltage	V _{CC} = 2.7 to 3.6 V	-	1.5	0.8	V
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}				
	voltage	I _O = -100 μA; V _{CC} = 2.3 V to 3.6 V	V _{CC} - 0.2	V _{CC}	-	V
		I _O = -4 mA; V _{CC} = 2.3 V	V _{CC} - 0.4	V _{CC} - 0.11	-	V
		I _O = -6 mA; V _{CC} = 2.3 V	V _{CC} - 0.6	V _{CC} - 0.17	-	V
		I _O = -4 mA; V _{CC} = 2.7 V	V _{CC} - 0.5	V _{CC} - 0.09	-	V
		I _O = -8 mA; V _{CC} = 2.7 V	V _{CC} - 0.7	V _{CC} - 0.19	-	V
		I _O = -6 mA; V _{CC} = 3.0 V	V _{CC} - 0.6	V _{CC} - 0.13	-	V
		I _O = -12 mA; V _{CC} = 3.0 V	V _{CC} - 1.0	V _{CC} - 0.27	-	V
V_{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}				
	voltage	I _O = 100 μA; V _{CC} = 2.3 V to 3.6 V	-	GND	0.20	V
		I _O = 4 mA; V _{CC} = 2.3 V	-	0.07	0.40	V
		I _O = 6 mA; V _{CC} = 2.3 V	-	0.11	0.55	V
		I _O = 4 mA; V _{CC} = 2.7 V	-	0.06	0.40	V
		I_{O} = 8 mA; V_{CC} = 2.7 V	-	0.13	0.60	V
		I_{O} = 6 mA; V_{CC} = 3.0 V	-	0.09	0.55	V
		I _O = 12 mA; V _{CC} = 3.0 V	-	0.19	0.80	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 2.3 \text{ V}$ to 3.6 V	-	0.1	5	μA
I _{BHL}	bus hold LOW	V _{CC} = 2.3 V; V _I = 0.7 V	45	-	-	μA
	current	V _{CC} = 3.0 V; V _I = 0.8 V	75	150	-	μA
I _{BHH}	bus hold HIGH	V _{CC} = 2.3 V; V _I = 1.7 V	-45	-	-	μΑ
	current	V _{CC} = 3.0 V; V _I = 2.0 V	-75	-175	-	μA
I _{BHLO}	bus hold LOW overdrive current	V _{CC} = 3.6 V	500	-	-	μΑ
I _{внно}	bus hold HIGH overdrive current	V _{CC} = 3.6 V	-500	-	-	μΑ
l _{OZ}	OFF-state output current	V_{CC} = 2.3 V to 3.6 V; V_{I} = V_{IH} or V_{IL} ; V_{O} = V_{CC} or GND	-	0.1	10	μΑ
I _{CC}	supply current	V_{CC} = 2.3 to 3.6 V; V_{I} = V_{CC} or GND; I_{O} = 0 A	-	0.2	40	μA
Δl _{CC}	additional supply current	per data I/O pin; $V_I = V_{CC} - 0.6 \text{ V}$; $I_O = 0 \text{ A}$; $V_{CC} = 2.3 \text{ V}$ to 3.6 V	-	150	750	μΑ
Cı	input capacitance		-	4.0	-	pF
C _{I/O}	input/output capacitance		-	8.0	-	pF

^[1] All typical values are measured at T_{amb} = 25 °C.

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). T_{amb} = -40 °C to +85 °C; For test circuit, see Fig. 10.

Symbol	Parameter	Conditions	Min	Typ [1]	Max	Unit
t _{pd}	propagation delay	An to Bn; Bn to An; Fig. 6 [2]				
		V _{CC} = 2.3 V to 2.7 V	1.3	4.0	5.3	ns
		V _{CC} = 2.7 V	-	3.9	5.2	ns
		V _{CC} = 3.0 V to 3.6 V	1.6	3.1	4.5	ns
		LEAB to Bn; LEBA to An; Fig. 7 [2]				
		V _{CC} = 2.3 V to 2.7 V	1.0	4.5	6.0	ns
		V _{CC} = 2.7 V	-	4.3	5.9	ns
		V _{CC} = 3.0 V to 3.6 V	1.5	3.5	5.1	ns
		CPAB to Bn; CPBA to An; Fig. 7 [2]				
		V _{CC} = 2.3 V to 2.7 V	1.5	4.7	6.4	ns
		V _{CC} = 2.7 V	-	4.5	6.3	ns
		V _{CC} = 3.0 V to 3.6 V	1.6	3.7	5.5	ns
t _{en}	enable time	OEAB to Bn; OEBA to An; Fig. 8 [2]				
		V _{CC} = 2.3 V to 2.7 V	1.6	3.9	6.1	ns
		V _{CC} = 2.7 V	-	3.9	6.7	ns
		V _{CC} = 3.0 V to 3.6 V	1.6	3.1	5.7	ns
t _{dis}	disable time	OEAB to Bn; OEBA to An; Fig. 8 [2]				
		V _{CC} = 2.3 V to 2.7 V	1.8	2.6	5.7	ns
		V _{CC} = 2.7 V	-	3.2	5.3	ns
		V _{CC} = 3.0 V to 3.6 V	1.8	2.9	4.8	ns
t _{su}	set-up time	An to CPAB; Bn to CPBA; Fig. 9				
		V _{CC} = 2.3 V to 2.7 V	2.3	-0.2	-	ns
		V _{CC} = 2.7 V	2.4	0.0	-	ns
		V _{CC} = 3.0 V to 3.6 V	2.1	-0.2	-	ns
		An to LEAB; Bn to LEBA; Fig. 9				
		V _{CC} = 2.3 V to 2.7 V	1.3	0.1	-	ns
		V _{CC} = 2.7 V	1.2	-0.2	-	ns
		V _{CC} = 3.0 V to 3.6 V	1.1	0.3	-	ns
		CEAB to CPAB; CEBA to CPBA;				
		V _{CC} = 2.3 V to 2.7 V	2.0	-0.4	-	ns
		V _{CC} = 2.7 V	2.0	-0.7	-	ns
		V _{CC} = 3.0 V to 3.6 V	1.7	-0.2	-	ns

8 / 15

Symbol	Parameter	Conditions	Min	Typ [1]	Max	Unit
t _h	hold time	An to CPAB; Bn to CPBA; Fig. 9				
		V _{CC} = 2.3 V to 2.7 V	1.2	0.3	-	ns
		V _{CC} = 2.7 V	1.1	0.3	-	ns
		V _{CC} = 3.0 V to 3.6 V	1.0	-0.1	-	ns
		An to LEAB; Bn to LEBA; Fig. 9				
		V _{CC} = 2.3 V to 2.7 V	1.3	0.2	-	ns
		V _{CC} = 2.7 V	1.6	0.1	-	ns
		V _{CC} = 3.0 V to 3.6 V	1.4	0.1	-	ns
		CEAB to CPAB; CEBA to CPBA;				
		V _{CC} = 2.3 V to 2.7 V	1.1	0.4	-	ns
		V _{CC} = 2.7 V	1.2	0.6	-	ns
		V _{CC} = 3.0 V to 3.6 V	1.1	0.4	-	ns
t _w	pulse width	LEAB HIGH; LEBA HIGH; Fig. 7				
		V _{CC} = 2.3 V to 2.7 V	3.3	1.6	-	ns
		V _{CC} = 2.7 V	3.3	0.7	-	ns
		V _{CC} = 3.0 V to 3.6 V	3.3	0.9	-	ns
		CPAB HIGH or LOW; CPBA HIGH or LOW; <u>Fig. 7</u>				
		V _{CC} = 2.3 V to 2.7 V	3.3	2.0	-	ns
		V _{CC} = 2.7 V	3.3	1.2	-	ns
		V _{CC} = 3.0 V to 3.6 V	3.3	0.9	-	ns
f _{max}	maximum frequency	CPAB, CPBA; Fig. 7				
		V _{CC} = 2.3 V to 2.7 V	150	190	-	MHz
		V _{CC} = 2.7 V	150	190	-	MHz
		V _{CC} = 3.0 V to 3.6 V	150	240	-	MHz
C _{PD}	power dissipation	per latch; $V_I = GND$ to V_{CC} [3]				
	capacitance	outputs enabled	-	21	-	pF
		outputs disabled	-	3	-	pF

[1] Typical values are measured at T_{amb} = 25 °C

Typical values for V_{CC} = 2.3 V to 2.7 V are measured at V_{CC} = 2.5 V

Typical values for V_{CC} = 3.0 V to 3.6 V are measured at V_{CC} = 3.3 V

[2] t_{pd} is the same as t_{PHL} and t_{PLH} ;

 t_{en} is the same as t_{PZH} and t_{PZL} ;

 t_{dis} is the same as t_{PHZ} and t_{PLZ} . [3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

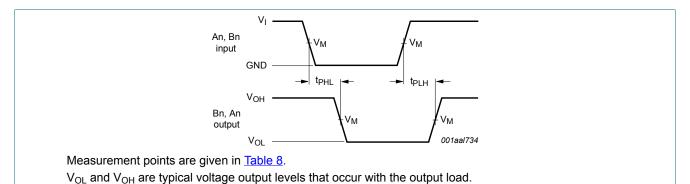
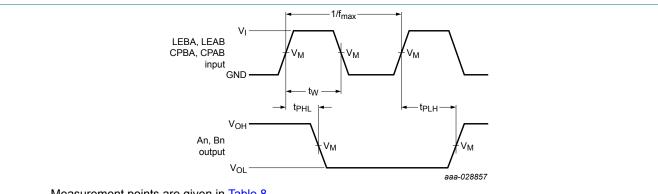
C_L = output load capacitance in pF;

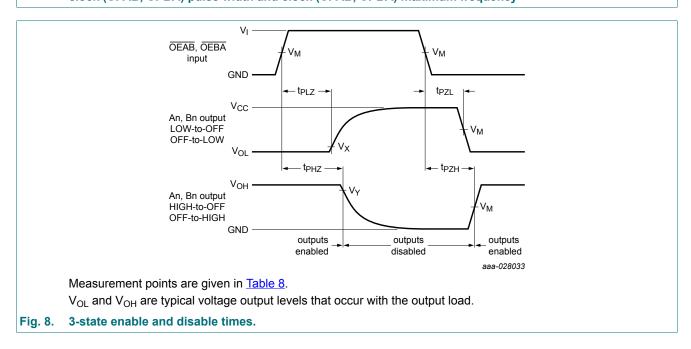
V_{CC} = supply voltage in V;

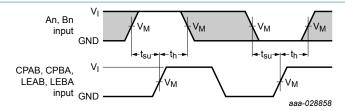
N = number of inputs switching;

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$

10.1. Waveforms and test circuit


Fig. 6. The input (An, Bn) to output (Bn, An) propagation delays.

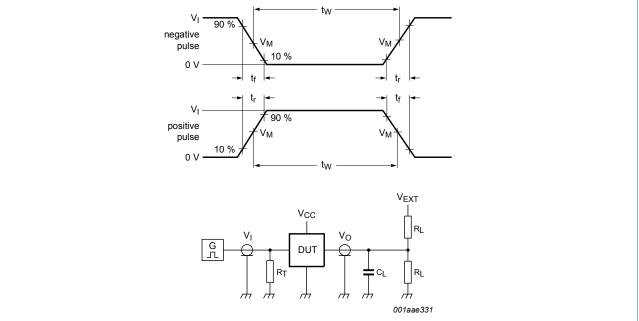


Measurement points are given in Table 8.

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Latch enable input (LEAB, LEBA) and clock input (CPAB, CPBA) to output (Bn, An) propagation delays; Fig. 7. clock (CPAB, CPBA) pulse width and clock (CPAB, CPBA) maximum frequency

Measurement points are given in Table 8.


The shaded areas indicate when the input is permitted to change for predictable output performance.

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig. 9. Data set-up and hold times for An and Bn inputs to LEAB, LEBA, CPAB or CPBA inputs.

Table 8. Measurement points

Supply voltage	Input		Output					
V _{CC}	V _I	V _M	V _M	V _X	V _Y			
2.3 V to 2.7 V	V _{CC}	0.5 V _{CC}	0.5 V _{CC}	V _{OL} + 0.15 V	V _{OH} - 0.15 V			
2.7 V	2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} - 0.3 V			
3.0 V to 3.6 V	2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} - 0.3 V			

Test data is given in Table 9.

Definitions for test circuit:

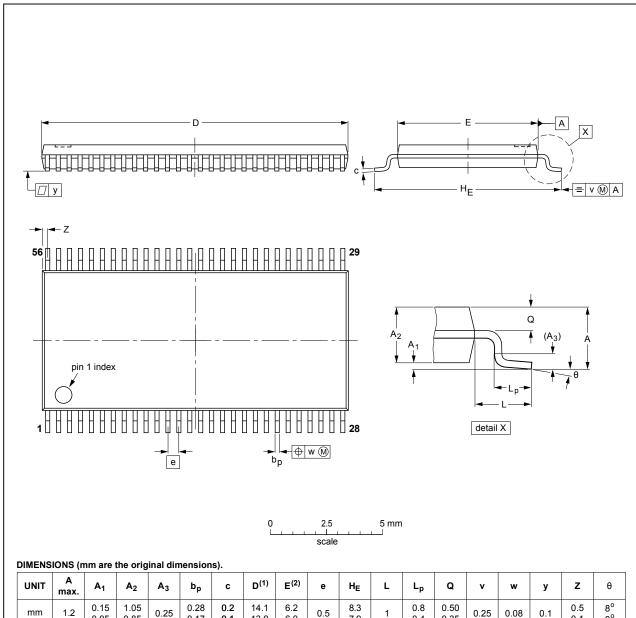
R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

V_{EXT} = External voltage for measuring switching times.

Fig. 10. Test circuit for measuring switching times


Table 9. Test data

Supply voltage	voltage Input		Load		V _{EXT}	V _{EXT}			
V _{CC}	VI	t _r , t _f	CL	R _L	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}		
2.3 V to 2.7 V	V _{CC}	≤ 2.0 ns	30 pF	500 Ω	open	2 × V _{CC}	GND		
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	2 × V _{CC}	GND		
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	2 × V _{CC}	GND		

11. Package outline

TSSOP56: plastic thin shrink small outline package; 56 leads; body width 6.1 mm

SOT364-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	z	θ
mm	1.2	0.15 0.05	1.05 0.85	0.25	0.28 0.17	0.2 0.1	14.1 13.9	6.2 6.0	0.5	8.3 7.9	1	0.8 0.4	0.50 0.35	0.25	0.08	0.1	0.5 0.1	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT364-1		MO-153			99-12-27 03-02-19

Fig. 11. Package outline SOT364-1 (TSSOP56)

12. Abbreviations

Table 10. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
TTL	Transistor-Transistor Logic

13. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74ALVCH162601 v.2	20180813	Product data sheet	-	74ALVCH162601 v.1		
Modifications:	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. 					
74ALVCH162601 v.1	19991014	Product specification	-	-		

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	1
4. Functional diagram	2
5. Pinning information	4
5.1. Pinning	4
5.2. Pin description	5
6. Functional description	5
7. Limiting values	6
8. Recommended operating conditions	6
9. Static characteristics	7
10. Dynamic characteristics	8
10.1. Waveforms and test circuit	10
11. Package outline	12
12. Abbreviations	13
13. Revision history	13
14. Legal information	14

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 13 August 2018

[©] Nexperia B.V. 2018. All rights reserved

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9