CMUDM7004

SURFACE MOUNT
N-CHANNEL
ENHANCEMENT-MODE
SILICON MOSFET

APPLICATIONS:

- Load/Power Switches
- Power Supply Converter Circuits
- Battery Powered Portable Devices

Central semiconductor corp.

www.centralsemi.com

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMUDM7004 is an Enhancement-mode N-Channel MOSFET, manufactured by the N-Channel DMOS Process, designed for high speed pulsed amplifier and driver applications. This MOSFET offers Low $r_{DS(on)}$ and Low Theshold Voltage.

MARKING CODE: 74C

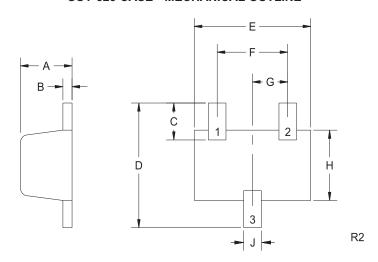
FEATURES:

- ESD Protection up to 2kV
- Low rDS(on)
- Low Threshold Voltage
- Logic Level Compatible
- Small, SOT-523 Surface Mount Package
- Complimentary P-Channel MOSFET: CMUDM8004

MAXIMUM RATING: (TA=25°C)	SYMBOL		UNITS
Drain-Source Voltage	V_{DS}	30	V
Gate-Source Voltage	V_{GS}	8.0	V
Continuous Drain Current	I_{D}	450	mA
Power Dissipation	P_{D}	250	mW
Operating and Storage Junction Temperature	T _J , T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS: (T_A=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
I _{GSSF} , I _{GSSR}	V_{GS} =8.0V, V_{DS} =0			3.0	μΑ
IDSS	V_{DS} =30V, V_{GS} =0			1.0	μΑ
BV _{DSS}	$V_{GS}=0, I_{D}=10\mu A$	30			V
V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	0.5		1.0	V
V _{SD}	V _{GS} =0, I _S =400mA	0.5		1.1	V
r _{DS(ON)}	V_{GS} =4.5V, I_D =200mA		280	460	$m\Omega$
r _{DS(ON)}	V_{GS} =2.5V, I_D =100mA		390	560	$m\Omega$
r _{DS(ON)}	V_{GS} =1.8V, I_D =75mA		550	730	$m\Omega$
Q _{g(tot)}	V_{DS} =15V, V_{GS} =4.5V, I_{D} =1.0A		0.792		nC
Q _{gs}	V_{DS} =15V, V_{GS} =4.5V, I_{D} =1.0A		0.15		nC
Q_{gd}	V_{DS} =15V, V_{GS} =4.5V, I_{D} =1.0A		0.23		nC
9FS	V _{DS} =10V, I _D =100mA	200			mS
C _{rss}	V_{DS} =25V, V_{GS} =0, f=1.0MHz		5.0	10	pF
C _{iss}	V_{DS} =25V, V_{GS} =0, f=1.0MHz		43	45	pF
Coss	V_{DS} =25V, V_{GS} =0, f=1.0MHz		8.0	15	pF
^t on	V_{DS} =5.0V, V_{GS} =4.0V, I_{D} =75mA, R_{G} =10 Ω	!	20		ns
^t off	V_{DS} =5.0V, V_{GS} =4.0V, I_{D} =75mA, R_{G} =10 Ω	!	75		ns


R2 (2-August 2011)

CMUDM7004



SURFACE MOUNT N-CHANNEL ENHANCEMENT-MODE SILICON MOSFET

SOT-523 CASE - MECHANICAL OUTLINE

PIN CONFIGURATION (Bottom View)

DIMENSIONS						
	INCHES		MILLIMETERS			
SYMBOL	MIN	MAX	MIN	MAX		
Α	0.023	0.031	0.58	0.78		
В	0.002	0.008	0.04	0.20		
С	0.013	0.021	0.34	0.54		
D	0.059	0.067	1.50	1.70		
E	0.059	0.067	1.50	1.70		
F	0.035	0.043	0.90	1.10		
G	0.020		0.50			
Н	0.031	0.039	0.78	0.98		
J	0.010	0.014	0.25	0.35		
SOT-523 (REV: R2)						

LEAD CODE:

- 1) Gate
- 2) Source
- 3) Drain

MARKING CODE: 74C

R2 (2-August 2011)

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9