

Is Now Part of



# **ON Semiconductor**®

# To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <a href="https://www.onsemi.com">www.onsemi.com</a>. Please email any questions regarding the system integration to <a href="https://www.onsemi.com">Fairchild\_questions@onsemi.com</a>.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese



December 2013

## FPDB60PH60B PFC SPM<sup>®</sup> 3 Series for 2-Phase Bridgeless PFC

## Features

- UL Certified No. E209204 (UL1557)
- 600 V 60 A 2-Phase Bridgeless PFC with Integral Gate Driver and Protection
- Very Low Thermal Resistance Using AIN DBC Substrate
- Built-in NTC Thermistor for Temperature Monitoring
- · Built-in Shunt Resistor for Current Sensing
- Optimized for 20kHz Switching Frequency
- Isolation Rating: 2500 Vrms/min.

## Applications

• 2-Phase Bridgeless PFC Converter

## **Related Source**

 <u>AN-9041 - Bridgeless PFC SPM 3 Series Design</u> <u>Guide</u>

## **General Description**

The FPDB60PH60B is an advanced PFC SPM<sup>®</sup> 3 module providing a fully-featured, high-performance Bridgeless PFC (Power Factor Correction) input power stage for consumer, medical, and industrial applications. These modules integrate optimized gate drive of the built-in IGBTs to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage lockout, over-current shutdown, thermal monitoring, and fault reporting. These modules also feature high-performance output diodes and shunt resistor for additional space savings and mounting convenience.

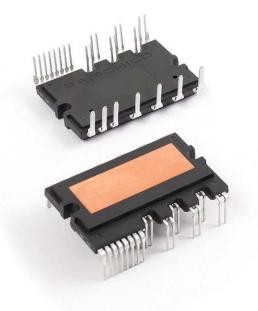



Figure 1. Package Overview

## Package Marking & Ordering Information

| Device      | Device Marking | Package   | Packing Type | Quantity |
|-------------|----------------|-----------|--------------|----------|
| FPDB60PH60B | FPDB60PH60B    | SPMHC-027 | Rail         | 10       |

## Integrated Drive, Protection and System Control Functions

- For IGBTs: gate drive circuit, Over-Current Protection (OCP), control supply circuit Under-Voltage Lock-Out (UVLO) Protection
- Fault signal: corresponding to OC and UV fault
- Built-in thermistor: temperature monitoring
- Input interface: active-HIGH interface, works with 3.3 / 5 V logic, Schmitt-trigger input

## **Pin Configuration**

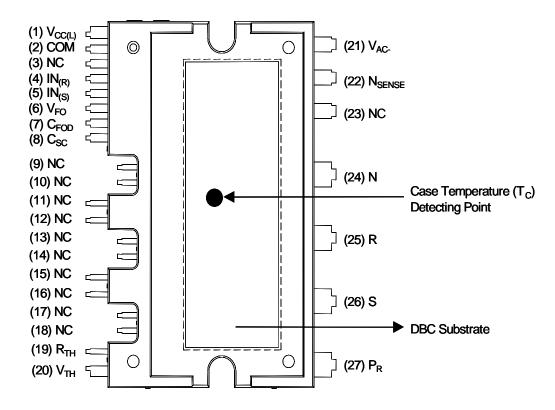
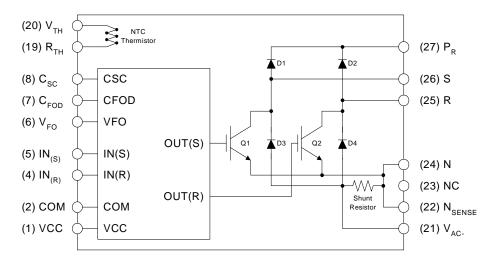




Figure 2. Top View

| Pin Number  | Pin Name           | Pin Description                                       |
|-------------|--------------------|-------------------------------------------------------|
| 1           | V <sub>CC</sub>    | Common Bias Voltage for IC and IGBTs Driving          |
| 2           | СОМ                | Common Supply Ground                                  |
| 4           | IN <sub>(R)</sub>  | Signal Input for Low-Side R-Phase IGBT                |
| 5           | IN <sub>(S)</sub>  | Signal Input for Low-Side S-Phase IGBT                |
| 6           | V <sub>FO</sub>    | Fault Output                                          |
| 7           | C <sub>FOD</sub>   | Capacitor for Fault Output Duration Selection         |
| 8           | C <sub>SC</sub>    | Capacitor(Low-Pass Filter) for Over-Current Detection |
| 19          | R <sub>(TH)</sub>  | Series Resistor for The Use of Thermistor             |
| 20          | V <sub>(TH)</sub>  | Thermistor Bias Voltage                               |
| 21          | V <sub>AC-</sub>   | Current Sensing Terminal                              |
| 22          | N <sub>SENSE</sub> | Current Sensing Reference Terminal                    |
| 24          | Ν                  | Negative Rail of DC-Link                              |
| 25          | R                  | Output for R-Phase                                    |
| 26          | S                  | Output for S-Phase                                    |
| 27          | P <sub>R</sub>     | Positive Rail of DC-Link                              |
| 3, 9~18, 23 | NC                 | No Connection                                         |

## Internal Equivalent Circuit



## Figure 3. Internal Block Diagram

### Notes:

1. Converter is composed of two IGBTs including four diodes and one IC which has gate driving and protection functions.

FPDB60PH60B PFC SPM® 3 Series for 2-Phase Bridgeless PFC

## Absolute Maximum Ratings ( $T_J = 25^{\circ}C$ , unless otherwise specified.) Converter Part

| Symbol                 | Item                               | Condition                              | Rating    | Unit             |
|------------------------|------------------------------------|----------------------------------------|-----------|------------------|
| V <sub>i</sub>         | Supply Voltage                     | Applied between R - S                  | 264       | V <sub>rms</sub> |
| V <sub>i(Surge)</sub>  | Supply Voltage (Surge)             | Applied between R - S                  | 500       | V                |
| V <sub>PN</sub>        | Output Voltage                     | Applied between P - N                  | 450       | V                |
| V <sub>PN(Surge)</sub> | Output Voltage (Surge)             | Applied between P - N                  | 500       | V                |
| V <sub>CES</sub>       | Collector - Emitter Voltage        |                                        | 600       | V                |
| $\pm I_{C}$            | Each IGBT Collector Current        | $T_{C} = 25^{\circ}C$                  | 60        | А                |
| $\pm I_{CP}$           | Each IGBT Collector Current (Peak) | $T_{C}$ = 25°C, Under 1 ms Pulse Width | 90        | А                |
| P <sub>C</sub>         | Collector Dissipation              | T <sub>C</sub> = 25°C per IGBT         | 178       | W                |
| V <sub>RRM</sub>       | Repetitive Peak Reverse Voltage    |                                        | 600       | V                |
| I <sub>FSM</sub>       | Peak Forward Surge Current         | Single Half Sine-Wave                  | 350       | А                |
| P <sub>RSH</sub>       | Power Rating of Shunt Resistor     | T <sub>C</sub> < 125°C                 | 2         | W                |
| Т <sub>Ј</sub>         | Operating Junction Temperature     | (Note 2)                               | -40 ~ 150 | °C               |

Notes:

2. The maximum junction temperature rating of the power chips integrated within the PFC SPM<sup>®</sup> product is  $150^{\circ}C(@T_{C} \le 100^{\circ}C)$ .

## **Control Part**

| Symbol          | Item                          | Condition                             | Rating                      | Unit |
|-----------------|-------------------------------|---------------------------------------|-----------------------------|------|
| V <sub>CC</sub> | Control Supply Voltage        | Applied between V <sub>CC</sub> - COM | 20                          | V    |
| V <sub>IN</sub> | Input Signal Voltage          | Applied between IN - COM              | -0.3 ~ 17.0                 | V    |
| V <sub>FO</sub> | Fault Output Supply Voltage   | Applied between V <sub>FO</sub> - COM | -0.3 ~ V <sub>CC</sub> +0.3 | V    |
| I <sub>FO</sub> | Fault Output Current          | Sink Current at V <sub>FO</sub> Pin   | 5                           | mA   |
| V <sub>SC</sub> | Current Sensing Input Voltage | Applied between C <sub>SC</sub> - COM | -0.3~V <sub>CC</sub> +0.3   | V    |

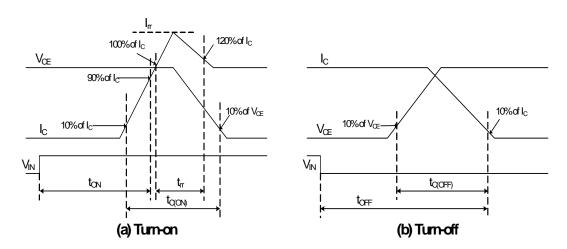
## **Total System**

| Symbol           | Item                              | Condition                                                          | Rating    | Unit             |
|------------------|-----------------------------------|--------------------------------------------------------------------|-----------|------------------|
| т <sub>с</sub>   | Module Case Operation Temperature |                                                                    | -20 ~ 100 | °C               |
| T <sub>STG</sub> | Storage Temperature               |                                                                    | -40 ~ 150 | °C               |
| V <sub>ISO</sub> | Isolation Voltage                 | 60 Hz, Sinusoidal, AC 1 Minute, Connect<br>Pins to Heat-Sink Plate | 2500      | V <sub>rms</sub> |

## **Thermal Resistance**

| Symbol                     | ltem                                | Condition       | Min. | Тур. | Max. | Unit |
|----------------------------|-------------------------------------|-----------------|------|------|------|------|
| $R_{\theta(j\text{-}c)Q}$  | Junction to Case Thermal Resistance | IGBT            | -    | -    | 0.7  | °C/W |
| $R_{\theta(j\text{-}c)HD}$ | (Referenced to PKG Center)          | High-Side Diode | -    | -    | 1.5  | °C/W |
| $R_{\theta(j\text{-}c)LD}$ |                                     | Low-Side Diode  | -    | -    | 0.85 | °C/W |

Notes:

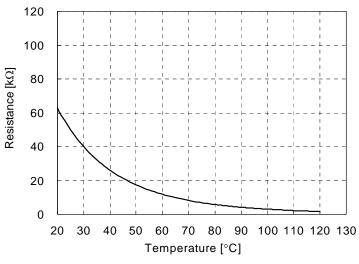

3. For the measurement point of case temperature(T\_C), please refer to Figure 2.

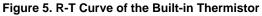
| Symbol               | Item                                   | Condition                                                                           | Min. | Тур. | Max. | Unit |
|----------------------|----------------------------------------|-------------------------------------------------------------------------------------|------|------|------|------|
| V <sub>CE(SAT)</sub> | IGBT Saturation Voltage                | $V_{CC} = 15 \text{ V}, \text{ V}_{IN} = 5 \text{ V}, \text{ I}_{C} = 50 \text{ A}$ | -    | 2.0  | 2.5  | V    |
| $V_{FH}$             | High-Side Diode Voltage                | I <sub>F</sub> = 50 A                                                               | -    | 2.4  | 2.9  | V    |
| V <sub>FL</sub>      | Low-Side Diode Voltage                 | I <sub>F</sub> = 50 A                                                               | -    | 1.2  | 1.6  | V    |
| t <sub>ON</sub>      | Switching Times                        | $V_{PN} = 400 \text{ V}, V_{CC} = 15 \text{ V}, I_{C} = 60 \text{ A}$               | -    | 560  | -    | ns   |
| t <sub>C(ON)</sub>   | -                                      | $V_{IN} = 0 V \leftrightarrow 5 V$ , Inductive Load<br>(Note 4)                     | -    | 270  | -    | ns   |
| t <sub>OFF</sub>     |                                        |                                                                                     | -    | 520  | -    | ns   |
| t <sub>C(OFF)</sub>  |                                        |                                                                                     | -    | 110  | -    | ns   |
| t <sub>rr</sub>      |                                        |                                                                                     | -    | 44   | -    | ns   |
| I <sub>rr</sub>      |                                        |                                                                                     | -    | 6.5  | -    | А    |
| R <sub>SENSE</sub>   | Current-Sensing Resistor               |                                                                                     | 1.8  | 2.0  | 2.2  | mΩ   |
| I <sub>CES</sub>     | Collector - Emitter<br>Leakage Current | V <sub>CE</sub> = V <sub>CES</sub>                                                  | -    | -    | 250  | μΑ   |

# **Electrical Characteristics** ( $T_J = 25^{\circ}C$ , unless otherwise specified.)

Notes: 4. t<sub>ON</sub>

ton and tore include the propagation delay of the internal drive IC. t<sub>C(ON)</sub> and t<sub>C(OFF)</sub> are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Figure 4.




| Symbol               | Item                                     | Condition                                                       | Min. | Тур. | Max. | Unit |
|----------------------|------------------------------------------|-----------------------------------------------------------------|------|------|------|------|
| IQCCL                | Quiescent V <sub>CC</sub> Supply Current | V <sub>CC</sub> = 15 V, IN = 0 V V <sub>CC</sub> - COM          | -    | -    | 26   | mA   |
| V <sub>FOH</sub>     | Fault Output Voltage                     | $V_{SC}$ = 0 V, $V_{FO}$ Circuit: 4.7 k $\Omega$ to 5 V Pull-up | 4.5  | -    | -    | V    |
| V <sub>FOL</sub>     |                                          | $V_{SC}$ = 1 V, $V_{FO}$ Circuit: 4.7 k $\Omega$ to 5 V Pull-up | -    | -    | 0.8  | V    |
| V <sub>SC(ref)</sub> | Over-Current Trip Level                  | V <sub>CC</sub> = 15 V                                          | 0.45 | 0.50 | 0.55 | V    |
| UV <sub>CCD</sub>    | Supply Circuit Under-Voltage             | Detection Level                                                 | 10.7 | 11.9 | 13.0 | V    |
| UV <sub>CCR</sub>    | Protection                               | Reset Level                                                     | 11.2 | 12.4 | 13.2 | V    |
| t <sub>FOD</sub>     | Fault-Out Pulse Width                    | C <sub>FOD</sub> = 33 nF (Note 5)                               | 1.4  | 1.8  | 2.0  | ms   |
| V <sub>IN(ON)</sub>  | ON Threshold Voltage                     | Applied between IN - COM                                        | 3.0  | -    | -    | V    |
| V <sub>IN(OFF)</sub> | OFF Threshold Voltage                    |                                                                 | -    | -    | 0.8  | V    |
| R <sub>TH</sub>      | Resistance of Thermistor                 | at $T_{C} = 25^{\circ}C$ (See Figure 5)                         | -    | 50   | -    | kΩ   |
|                      |                                          | at T <sub>C</sub> = 80°C (See Figure 5)                         | -    | 5.76 | -    | kΩ   |

**Notes:** 5. The fault-out pulse width  $t_{FOD}$  depends on the capacitance value of  $C_{FOD}$  according to the following approximate equation:  $C_{FOD} = 18.3 \times 10^{-6} \times t_{FOD}[F]$ 

### R-T Graph





## **Recommended Operating conditions**

| Symbol               | Item                     | Condition                                                 | Min. | Тур. | Max. | Unit             |
|----------------------|--------------------------|-----------------------------------------------------------|------|------|------|------------------|
| VI                   | Input Supply Voltage     | Applied between R - S                                     | 180  | -    | 264  | V <sub>rms</sub> |
| V <sub>PN</sub>      | Output Voltage           | Applied between P - N                                     | -    | 280  | 400  | V                |
| V <sub>CC</sub>      | Control Supply Voltage   | Applied between V <sub>CC</sub> - COM                     | 13.5 | 15   | 16.5 | V                |
| dV <sub>CC</sub> /dt | Control Supply Variation | Applied between IN - COM                                  | -1   | -    | 1    | V/µs             |
| f <sub>PWM</sub>     | PWM Input Signal         | $T_C \leq 100^\circ C,  T_J \leq 125^\circ C,  per  IGBT$ | -    | 20   | -    | kHz              |

| Mechanical C    | haracteristics and | Ratings              |      |       |      |       |
|-----------------|--------------------|----------------------|------|-------|------|-------|
| ltem            |                    | Condition            | Min. | Тур.  | Max. | Units |
| Mounting Torque | Mounting Screw: M3 | Recommended 0.62 N•m | 0.51 | 0.62  | 0.72 | N∙m   |
| Device Flatness | See Figure 6       |                      | 0    | -     | +120 | μm    |
| Weight          |                    |                      | -    | 15.00 | -    | g     |

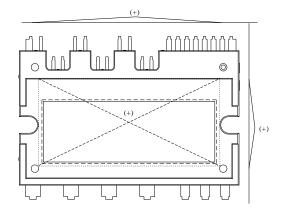
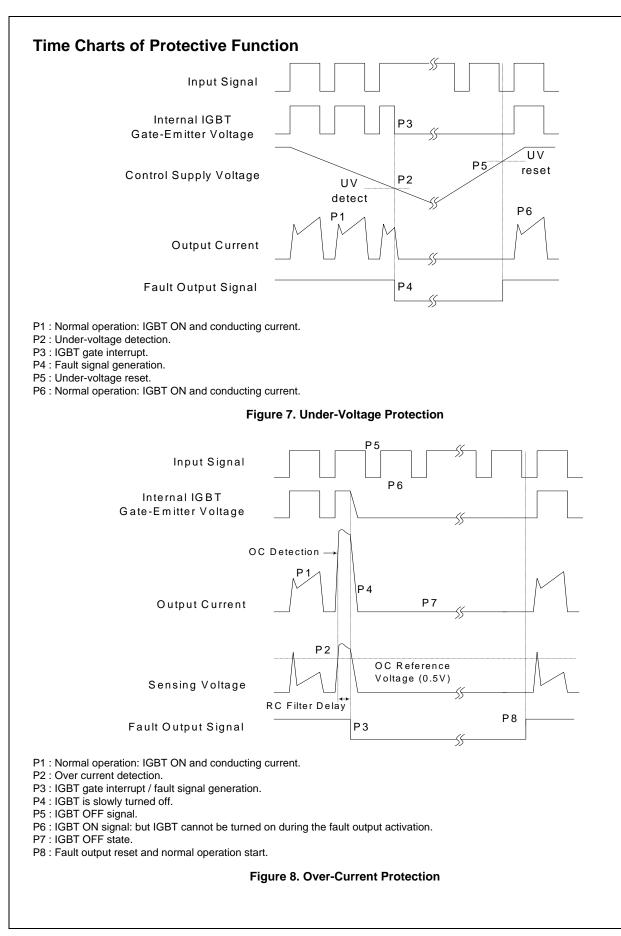
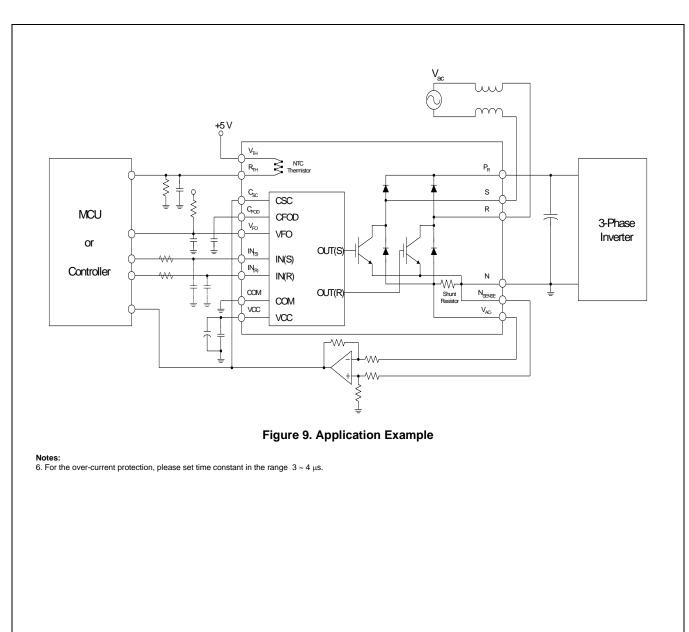
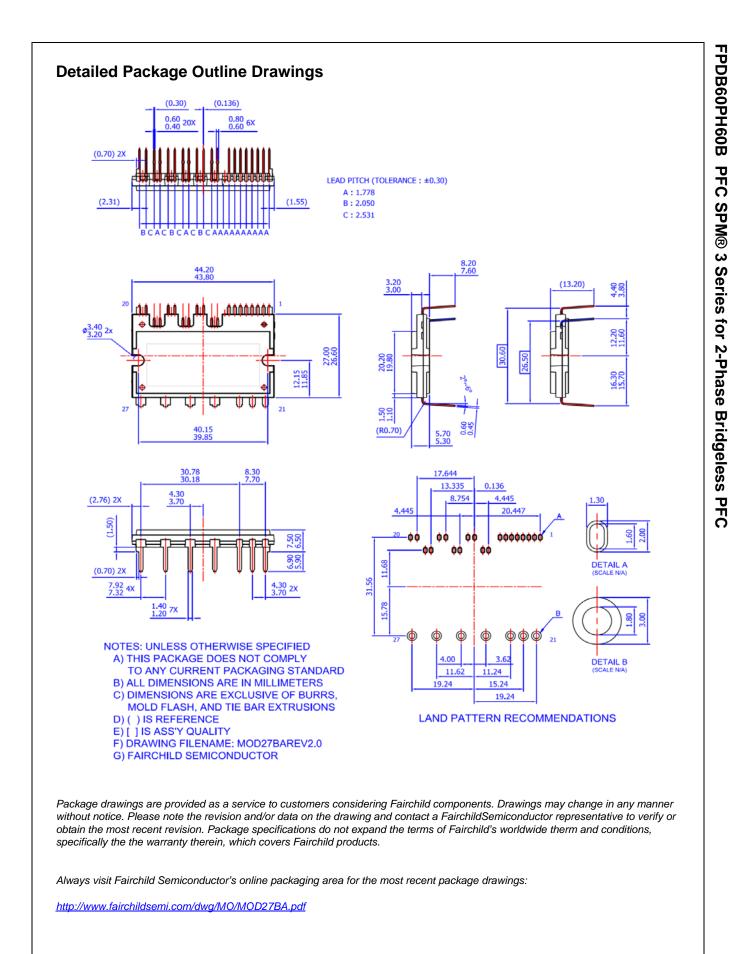






Figure 6. Flatness Measurement Position









### TRADEMARKS

AccuPower<sup>TM</sup>

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AX-CAP **BitSiC™** Build it Now™ CorePLUS™ CorePOWER<sup>TM</sup> **CROSSVOLT**<sup>IM</sup> CTL TH Current Transfer Logic™ DEUXPEED Dual Cool™ EcoSPARK<sup>®</sup> EfficientMax<sup>™</sup> ESBC<sup>Th</sup> F Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT FAST® FastyCore<sup>TM</sup> **FETBench™ FPS**<sup>TM</sup>

F-PFS" FRFET® Global Power Resource<sup>™</sup> GreenBridge Green FPS™ Green FPS™ e-Series™ Gmax™ **GTOTM** IntelliMAX<sup>TM</sup> **ISOPLANAR**<sup>TM</sup> Making Small Speakers Sound Louder and Better MegaBuck MICROCOUPLER MicroFET MicroPak™ MicroPak2™ MillerDrive™ MotionMax<sup>™</sup> mWSaver OptoHiT™ **OPTOLOGIC® OPTOPLANAR<sup>®</sup>** 

0 PowerTrench<sup>®</sup> PowerXS™ Programmable Active Droop™ OFET OSTM. Quiet Series™ RapidConfigure™  $\mathcal{O}^{\mathbb{N}}$ Saving our world, 1mW/W/kW at a time™ SignalWise SmartMax™ SMART START Solutions for Your Success™ SPM® STEALTH<sup>TM</sup> SuperFET<sup>®</sup> SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS<sup>®</sup> SyncFET™

Sync-Lock™ SYSTEM GENERAL<sup>®</sup> TinyBoost<sup>®</sup> TinyBuck<sup>®</sup>

TinyCalc™ TinyCalc™ TinyDoyer™ TinyPower™ TinyPower™ TinyWr™ TranSiC™ TrifEaut Detect™ TRUECURRENT®+ USerDes™ FPDB60PH60B PFC SPM® 3 Series for 2-Phase Bridgeless PFC



UHC<sup>®</sup> Ultra FRFET<sup>™</sup> UniFET<sup>™</sup> VCX<sup>™</sup> VisualMax<sup>™</sup> VoltagePlus<sup>™</sup> XS<sup>™</sup>

\* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

### As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

### PRODUCT STATUS DEFINITIONS

| Datasheet Identification | Product Status        | Definition                                                                                                                                                                                             |
|--------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                          |
| Preliminary              | First Production      | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild<br>Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed | Full Production       | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make<br>changes at any time without notice to improve the design.                                               |
| Obsolete                 | Not In Production     | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor.<br>The datasheet is for reference information only.                                                    |

Rev. 166

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

### PUBLICATION ORDERING INFORMATION

### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

## **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: <u>FPDB60PH60B</u>





Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

## Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

## http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

## Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru\_4

moschip.ru\_6 moschip.ru\_9