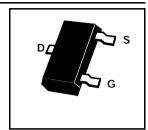
SOT23 N-CHANNEL ENHANCEMENT MODE VERTICAL DMOS FET


VN10LF

ISSUE 2 – JANUARY 1996

FEATURES

- * 60 Volt V_{DS}
- * $R_{DS(on)} = 5\Omega$

PARTMARKING DETAIL - MY

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	VALUE	UNIT
Drain-Source Voltage	V _{DS}	60	V
Continuous Drain Current at T _{amb} = 25°C	I _D	150	mA
Pulsed Drain Current	I _{DM}	3	Α
Gate Source Voltage	V _{GS}	± 20	V
Power Dissipation at T _{amb} = 25°C	P _{tot}	330	mW
Operating and Storage Temperature Range	T _j :T _{stg}	-55 to +150	°C

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated).

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.	
Drain-Source Breakdown Voltage	BV _{DSS}	60			V	$I_D = 100 \mu A, V_{GS} = 0 V$	
Gate-Source Breakdown Voltage	V _{GS(th)}	8.0		2.5	V	$I_D=1mA$, $V_{DS}=V_{GS}$	
Gate Body Leakage	I _{GSS}			100	nA	V_{GS} =± 20V, V_{DS} =0V	
Zero Gate Voltage Drain Current (1)	I _{DSS}			10	μΑ	V _{DS} =60 V, V _{GS} =0V	
On State Drain Current(1)	I _{D(on)}	750			mA	V _{DS} =15 V, V _{GS} =10V	
Static Drain Source On State Resistance (1)	R _{DS(on)}			5.0 7.5	Ω Ω	V _{GS} =10V, I _D =500mA V _{GS} =5V, I _D =200mA	
Forward Transconductance (1)(2)	g _{fs}	100			mS	V _{DS} =15V, I _D =500mA	
Input Capacitance (2)	C _{iss}			60	pF		
Common Source Output Capacitance (2)	C _{oss}			25	pF	V _{DS} =25 V, V _{GS} =0V f=1MHz	
Reverse Transfer Capacitance (2)	C _{rss}			5	pF		
Turn-On Time (2)(3)	t _(on)		3	10	ns		
Turn-Off Time (2)(3)	t _(off)		4	10	ns	V _{DD} ≈15V, I _D =600mA	

⁽¹⁾ Measured under pulsed conditions. Width=300µs. Duty cycle ≤2% (2) Sample test.

⁽³⁾ Switching times measured with 50Ω source impedance and <5ns rise time on a pulse generator Spice parameter data is available upon request for this device For typical characteristics graphs see ZVN3306F datasheet.

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9