TMDS Regenerators with Multiplexers

The ISL54100, ISL54101, ISL54102 are high-performance TMDS (Transition Minimized Differential Signaling) timing regenerators and multiplexers. The receiver contains a programmable equalizer and a clock data recovery (CDR) function for each of the 3 TMDS pairs in an HDMI or DVI signal. The TMDS data outputs of the ISL54100 are regenerated and perfectly aligned to the regenerated TMDS clock signal, creating an extremely clean, low-jitter DVI/HDMI signal that can be easily decoded by any TMDS receiver.

The ISL54100's design and package footprint supports many compound configurations. Two ISL54100s can create a DualLink 4:1 mux, a $4: 2$ crosspoint, or an $8: 1$ mux. Additional ISL54100s can create larger combinations of these building blocks. The ISL54102 with its 2:1 multiplexing function serves applications with fewer inputs, while the ISL54101 can be used as a cable extender, to clean up a noisy/jittery TMDS source, or to provide a very stable TMDS signal to a marginal DVI or HDMI receiver.

Certified HDMI 1.3a compliant by the HDMI ATC for the following features: 12 bit Deep Color (1080i/720p guaranteed, 1080p typical), x.v.Color ${ }^{\text {TM }}$, and all HDMI1.3 audio formats and options.

Features

- ISL54100: 4:1 TMDS regenerator and multiplexer
- ISL54101: 1:1 TMDS regenerator
- ISL54102: 2:1 TMDS regenerator and multiplexer
- Clock Data Recovery and Retiming function enables use as TMDS range extender
- Programmable pre-emphasis on output driver
- Channel activity detect based on input TMDS clock activity
- Symmetrical pinout enables high-performance DualLink, 4:2 crosspoint and 8:1 multiplexing options
- Programmable internal $50 \Omega, 100 \Omega$, or high-Z termination
- External pins for channel select, activity detection
- Stand-alone or $I^{2} \mathrm{C}$ software-controlled operation
- Hardware, software, or automatic channel selection
- Pb-free (RoHS compliant)

Applications

- KVM switches
- A/V receivers
- DVI/HDMI extenders
- Televisions/PC monitors/projectors

Block Diagrams

Block Diagram of ISL54100 (ISL54101, ISL54102 identical except for number of channels)

Ordering Information

PART NUMBER (Note)	NUMBER OF CHANNELS	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE (Pb-Free)	PKG. DWG. \#
ISL54100CQZ	4	0 to +70	128 Ld MQFP	MDP0055
ISL54101CQZ	1	0 to +70	128 Ld MQFP	MDP0055
ISL54102CQZ	2	0 to +70	128 Ld MQFP	MDP0055

NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100\% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Absolute Maximum Ratings

Voltage on V_{D} (referenced to GND) . 4.0V
Voltage on any Input Pin (referenced to GND) . . . -0.3 V to $\mathrm{V}_{\mathrm{D}}+0.3 \mathrm{~V}$
Voltage on any "5V Tolerant" Input Pin
(referenced to GND). -0.3V to +6.0V
Current into any Output Pin . $\pm 20 \mathrm{~mA}$
ESD Classification
Human Body Model . . . >4000V, higher voltage testing in progress Machine Model $>200 \mathrm{~V}$, higher voltage testing in progress

Thermal Information

Thermal Resistance (Typical, Note 1)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
MQFP Package	60
Maximum Biased Junction Temperature	$+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Pb-free reflow profile. http://www.intersil.com/pbfree/Pb-F	.see link below

Recommended Operating Conditions

Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Supply Voltage. V V $=3.3 \mathrm{~V}$

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTE:

1. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

Electrical Specifications Specifications apply for $\mathrm{V}_{\mathrm{D}}=3.3 \mathrm{~V}$, pixel rate $=165 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, RES_TERM $=1 \mathrm{k} \Omega$, RES_BIAS $=3.16 \mathrm{k} \Omega$, TMDS output load $=50 \Omega$, TMDS output termination voltage $\mathrm{V}_{\mathrm{TERM}}=3.0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	COMMENT	$\begin{gathered} \text { MIN } \\ \text { (Note 2) } \end{gathered}$	TYP	MAX (Note 2)	UNIT
FULL CHANNEL CHARACTERISTICS						
$\mathrm{f}_{\text {DATA_MAX }}$	Maximum Rx Clock Frequency/Pixel Rate	(Note 3)	165	225		MHz
f ${ }_{\text {DATA_MIN }}$	Minimum Rx Clock Frequency/Pixel Rate				25	MHz
TMDS RECEIVER CHARACTERISTICS						
$\mathrm{V}_{\text {SENS }}$	Minimum Differential Input Sensitivity			50	150	$m V_{P-P}$
R_{50}	50Ω Termination Resistance		45	50	55	Ω
R_{100}	100Ω Termination Resistance		90	97	110	Ω
$\mathrm{CLK}_{\text {DUTY }}$	Rx Clock Duty Cycle		20		80	\%
TMDS TRANSMITTER CHARACTERISTICS						
jix_CLOCK	Total Jitter on Clock Outputs	Independent of incoming jitter		32		ps
jTX_DATA	Total Jitter on Data Outputs	Independent of incoming jitter		52		ps
SKEW ${ }_{\text {INTRA }}$	Intra-Pair (+ to -) Differential Skew			± 4		ps
SKEW ${ }_{\text {INTER }}$	Inter-Pair (channel-to-channel) Skew	Added with respect to incoming inter-pair skew			2	UI
$t_{\text {RISE }}$	Rise Time into 50Ω Load to 3.3V	20\% to 80\%	80		240	ps
$\mathrm{t}_{\text {FALL }}$	Fall Time into 50Ω Load to 3.3 V	20\% to 80%	80		240	ps
TX V_{OH}	Single-Ended High Level Output Voltage		$\mathrm{V}_{\text {TERM }}-10$		$\mathrm{V}_{\text {TERM }}+10$	mV
TX V ${ }_{\text {OL }}$	Single-Ended Low Level Output Voltage		$\mathrm{V}_{\text {TERM }}-600$		$\mathrm{V}_{\text {TERM }}-400$	mV
DIGITAL SCHMITT INPUT CHARACTERISTICS						
V_{IH}	High Threshold Voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	High to Low Threshold Voltage				0.8	V
1	Input Leakage Current			± 10		nA
R_{PU}	Internal Pull-Up Resistance	SDA and SCL pins		65		$\mathrm{k} \Omega$
R_{PD}	Internal Pull-Down Resistance	AUTO_CH_SEL, CH_SEL_x, RESET, ADDRx, PD pins		60		$\mathrm{k} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			5		pF

Electrical Specifications

Specifications apply for $\mathrm{V}_{\mathrm{D}}=3.3 \mathrm{~V}$, pixel rate $=165 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, RES_TERM $=1 \mathrm{k} \Omega$, RES_BIAS $=3.16 \mathrm{k} \Omega$, TMDS output load $=50 \Omega$, TMDS output termination voltage $\mathrm{V}_{\text {TERM }}=3.0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	COMMENT	$\begin{gathered} \text { MIN } \\ \text { (Note 2) } \end{gathered}$	TYP	$\begin{gathered} \text { MAX } \\ \text { (Note 2) } \end{gathered}$	UNIT
DIGITAL OUTPUT CHARACTERISTICS						
V_{OH}	Output HIGH Voltage, $\mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}$		2.4			V
V_{OL}	Output LOW Voltage, $\mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA}$				0.4	V
POWER SUPPLY REQUIREMENTS						
V_{D}	Supply Voltage		3	3.3	3.6	V
ID	Supply Current ISL54100	All available inputs driven by 165Mpixel/s TMDS signals. Default register settings		387	435	mA
	ISL54101			357	405	mA
	ISL54102			370	415	mA
ID	Supply Current in Power-down Mode	All available inputs driven by 165Mpixel/s TMDS signals.		20	26	mA
AC TIMING CHARACTERISTICS (2-WIRE INTERFACE)						
$\mathrm{f}_{\text {SCL }}$	SCL Clock Frequency		0		400	kHz
t_{AA}	SCL LOW to SDA Data Out Valid			200	470	ns
$\mathrm{t}_{\text {BUF }}$	Time the Bus Must be Free Before a New Transmission Can Start		1.3			$\mu \mathrm{s}$
tow	Clock LOW Time		1.3	0.1		$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	Clock HIGH Time		0.6	0.2		$\mu \mathrm{s}$
${ }^{\text {tsu }}$: STA	Start Condition Setup Time		0.6	0.03		$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD: }}$ STA	Start Condition Hold Time		0.6	0.07		$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU:DAT }}$	Data In Setup Time		100	0.03		ns
$\mathrm{t}_{\text {HD: }}$ DAT	Data In Hold Time		0			ns
$\mathrm{t}_{\text {su:STo }}$	Stop Condition Setup Time		0.6			$\mu \mathrm{s}$
t_{DH}	Data Output Hold Time		160			ns

NOTE:
2. Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.
3. Operation up to 165 MHz is guaranteed. While many parts will typically operate up to 225 MHz , operation above 165 MHz is not guaranteed.

FIGURE 1. 2-WIRE INTERFACE TIMING

ISL54100 Pin Configuration

ISL54101 Pin Configuration

ISL54102 Pin Configuration

Pin Descriptions

SYMBOL	DESCRIPTION
$\begin{aligned} & \text { RX0-_A, RX0+_A, RX1-_A, RX1+_A, } \\ & \text { RX2__A, RX2+_A } \end{aligned}$	TMDS Inputs. Incoming TMDS data signals for Channel A.
$\begin{aligned} & \text { RX0-_B, RX0+_B, RX1-_B, RX1+_B, } \\ & \text { RX2-_B, RX2+_B } \end{aligned}$	TMDS Inputs. Incoming TMDS data signals for Channel B (ISL54100 and ISL54102 only).
$\begin{aligned} & \text { RX0-_C, RX0+_C, RX1-_C, RX1+_C, } \\ & \text { RX2-_C, RX2+_C } \end{aligned}$	TMDS Inputs. Incoming TMDS data signals for Channel C (ISL54100 only).
$\begin{aligned} & \text { RX0-_D, RX0+_D, RX1-_D, RX1+_D, } \\ & \text { RX2-_D, RX2+_D } \end{aligned}$	TMDS Inputs. Incoming TMDS data signals for Channel D (ISL54100 only).
$\begin{aligned} & \text { RXC-_A, RXC+_A, RXC-_B, RXC+_B, } \\ & \text { RXC-_C, RXC+_C, RXC-_D, RXC+_D } \end{aligned}$	TMDS Inputs. Incoming TMDS clock signals for Channels A, B, C and D (ISL54100), Channels A and B (ISL54102), or Channel A (ISL54101).
TX0-, TX0+, TX1-, TX1+, TX1-, TX1+	TMDS Outputs. TMDS output data for selected channel.
TXC-, TXC+	TMDS Outputs. TMDS output clock for selected channel.
SCL	Digital input, 5 V tolerant, 500 mV hysteresis. Serial data clock for 2-wire interface. Note: Internal $65 \mathrm{k} \Omega$ pull-up to V_{D}.
SDA	Bidirectional Digital I/O, open drain, 5V tolerant. Serial data I/O for 2-wire interface. Note: Internal $65 \mathrm{k} \Omega$ pull-up to V_{D}.
ADDR[6:0]	Digital inputs, 5 V tolerant. 7-Bit address for serial interface. Note: Internal $60 \mathrm{k} \Omega$ pull-down to GND.
CH_SEL_0, CH_SEL_1	Digital I/Os, 3.3V. Channel select inputs (for stand-alone operation), selected channel outputs (for software configured or auto channel select modes). CH_SEL_1 should be left unconnected for the ISL54102. CH_SEL_0 and CH_SEL_1 should both be left unconnected for the ISL54101. Note: The state of these outputs becomes random when the chip is in the Power-down mode.
AUTO_CH_SEL	Digital Input. Pull high to have the mux automatically select the highest channel (A is highest, D is lowest) with an active TMDS clock. Low is manual channel select.
CHA_Active, CHB_Active, CHC_Active, CHD_Active	Digital Outputs, 3.3V. Output goes high when there is an active TMDS clock on that channel's input. Used for activity detect in a stand-alone configuration. CHC_Active and CHD_Active are NC (do Not Connect) for the ISL54102. CHB_Active, CHC_Active and CHD_Active are NC (do Not Connect) for the ISL54101.
RES_BIAS	Tie to GND through a 3.16k external resistor. Sets up internal bias currents.
RES_TERM	Tie to VD through a 1.0k 1\% external resistor. During calibration, the termination resistor closest in value to RES_TERM/20 (= 50Ω) is selected.
PD	Digital Input, 3.3V. PD = Power-down. Pull high to put the ISL5410x in a minimum power consumption mode. Note: To ensure proper operation, this pin must be held low during power-up. It may be taken high 100 ms after the power supplies have settled to $3.3 \mathrm{~V} \pm 10 \%$. When exiting Power-down, a termination resistor Recalibration cycle must be run to re-trim the termination resistors (see register 0x03[7]). Note: Internal $60 \mathrm{k} \Omega$ pull-down to GND.
RESET	Digital Input, 3.3V. Pull high then low to reset the mux. Tie to GND in final application. Note: Internal 60k pull-down to GND.
TEST	Digital Input. Used for production testing only. Tie to GND in final application. This pin has an internal pulldown to GND, so it is also acceptable to leave this pin floating.
V_{D}	Power supply. Connect to a 3.3 V supply and bypass each pin to GND with $0.1 \mu \mathrm{~F}$.
V_{D} ESD	Power supply for ESD protection diodes. Connect one of these pins (pin 74 or 95) to the $3.3 \mathrm{~V} \mathrm{~V}_{\mathrm{D}}$ supply rail with a low V_{F} (0.4 V or lower) Schottky diode, with the cathode connected to V_{D} ESD and the anode connected to V_{D}. Bypass each pin to GND with $0.1 \mu \mathrm{~F}$.
GND	Ground return for V_{D}.

Register Listing

ADDRESS	REGISTER (DEFAULT VALUE)	BIT(S)	FUNCTION NAME	DESCRIPTION
0x00	Device ID (read only)	3:0	Device Revision	1 = initial silicon, 2 = second revision, etc.
		7:4	Device ID	3 = ISL5410x
0x01	Channel Activity Detect (read only)	0	Channel A Active	0 : TMDS clock not present on Channel A 1: TMDS clock detected on Channel A
		1	Channel B Active	0: TMDS clock not present on Channel B 1: TMDS clock detected on Channel B
		2	Channel C Active	0: TMDS clock not present on Channel C 1: TMDS clock detected on Channel C
		3	Channel D Active	0: TMDS clock not present on Channel D 1: TMDS clock detected on Channel D
0x02	Channel Selection (0x0C)	1:0	Channel Select	Selects the input channel for the mux. These 2 bits are Read Only if Auto Channel Select is enabled. 0: Channel A selected 1: Channel B selected 2: Channel C selected 3: Channel D selected
		2	Auto Channel Select	0 : Manual Channel Select (using bits 0 and 1). 1: Auto Channel Select. Mux always selects the active channel with the highest priority. $\mathrm{A}=1$ st (highest), $\mathrm{B}=2 \mathrm{nd}$, C = 3rd, D = 4th (lowest) priority. An active channel is a channel that has clock activity on its TMDS clock lines. If no channels are active, the A channel is selected. (default)
		3	Hardware Channel Select	0 : Software channel selection (using bits 0-2 of this register) 1: Hardware channel selection (using "Auto Channel Select" and "CH Sel 0/1" external pins) (default)
		4	Reset	Full chip reset. Write a 1 to reset. Will set itself to 0 when reset is complete.
		5	Power-down	0: Normal Operation 1: Puts the chip in a minimal power consumption mode, turning off all TMDS outputs and open-circuiting all TMDS inputs. This bit is OR'ed with the Power-down input pin. If either is set, the chip will enter power-down. Serial I/O stays operational in PD mode. Note: When exiting Power-down, a termination resistor Recalibration cycle must be run to re-trim the termination resistors (see register $0 \times 03[7]$).

Register Listing (Continued)

ADDRESS	REGISTER (DEFAULT VALUE)	BIT(S)	FUNCTION NAME	DESCRIPTION
0x03	Input Control (0×12) Recommended default: 0x62	0	Tri-state Unselected Clock Inputs	0: Normal Operation 1: Termination of unselected TMDS clock inputs is tri-stated to save power. Setting this bit will disable the activity detect function. This bit should not be set in crosspoint configuration because it will make the clock termination resistance variable depending on which 2 inputs are selected. In general, this bit should always be set to 0 .
		1	Tri-state Unselected Data Inputs	0: Normal Operation 1: Unselected Data inputs are tri-stated to save power. This bit should not be set in crosspoint configuration because it will make the data input termination resistance variable depending on which 2 inputs are selected. (default)
		2	Tri-state Selected Clock Inputs	0 : Selected Clock inputs are terminated into 50 $\Omega / 100 \Omega$. 1: Selected Clock inputs are tri-stated (to allow chip to operate in parallel with another TMDS receiver with fixed 50Ω termination)
		3	Tri-state Selected Data Inputs	0: Selected Data inputs are terminated into 50 $\Omega / 100 \Omega$. 1: Selected Data inputs are tri-stated (to allow chip to operate in parallel with another TMDS receiver with fixed 50Ω termination)
		4	Activity Detect Mode	0: AC Activity. Activity detection is based on the presence of AC activity on TMDS clock inputs. This setting (along with a hysteresis of 20 mV enabled) provides reliable activity detection. (recommended setting) 1: Common Mode Voltage. If the common mode voltage is above -3.05 V , the input is considered inactive. This method has been found to be unreliable with small signal swings and should not be used. This setting is the silicon default but should be changed in software for more reliable activity detection.
		5	Clock Rx Hysteresis	Enables hysteresis for the clock inputs to prevent false clock detection when both inputs are high. Data inputs do not get hysteresis. 0: TMDS input hysteresis disabled 1: TMDS input hysteresis enabled. Eliminates false activity detects on unconnected channels. (recommended setting)
		6	Clock Rx Hysteresis Magnitude	Controls the amount of hysteresis in the clock inputs. $0: 10 \mathrm{mV}$ 1: 20 mV (recommended setting)
		7	Recalibrate	0: Normal Operation 1: Recalibrates termination resistance. To recalibrate, take this bit high, wait at least 1 ms , then take this bit low. Calibration is automatically done after power-on, but performing a recalibration after the supply voltage and temperature have stabilized may result in termination resistances closer to the desired 50Ω.

Register Listing (Continued)

ADDRESS	REGISTER (DEFAULT VALUE)	BIT(S)	FUNCTION NAME	DESCRIPTION
0x04	Termination Control (0x00)	0	Data Termination A	0: Channel A TMDS Data inputs terminated into 50Ω (normal operation) 1: Channel A TMDS Data inputs terminated into 100Ω (for paralleled inputs)
		1	Data Termination B	0: Channel B TMDS Data inputs terminated into 50Ω (normal operation) 1: Channel B TMDS Data inputs terminated into 100Ω (for paralleled inputs)
		2	Data Termination C	0: Channel C TMDS Data inputs terminated into 50Ω (normal operation) 1: Channel C TMDS Data inputs terminated into 100Ω (for paralleled inputs)
		3	Data Termination D	0: Channel D TMDS Data inputs terminated into 50Ω (normal operation) 1: Channel D TMDS Data inputs terminated into 100Ω (for paralleled inputs)
		4	Clk Termination A	0: Channel A TMDS Clock inputs terminated into 50Ω (normal operation) 1: Channel A TMDS Clock inputs terminated into 100Ω (for paralleled inputs)
		5	Clk Termination B	0: Channel B TMDS Clock inputs terminated into 50Ω (normal operation) 1: Channel B TMDS Clock inputs terminated into 100Ω (for paralleled inputs)
		6	CIk Termination C	0: Channel C TMDS Clock inputs terminated into 50Ω (normal operation) 1: Channel C TMDS Clock inputs terminated into 100Ω (for paralleled inputs)
		7	CIk Termination D	0: Channel D TMDS Data inputs terminated into 50Ω (normal operation) 1: Channel D TMDS Data inputs terminated into 100Ω (for paralleled inputs)
0x05	Output Options (0x00)	0	Tri-state Clock Outputs	0: Normal Operation 1: Clock outputs tri-stated (allows another chip to drive the output clock pins)
		1	Tri-state Data Outputs	0: Normal Operation 1: Data outputs tri-stated (allows another chip to drive the output data pins)
		2	Invert Output Polarity	0: Normal Operation 1: The polarity of the TMDS data outputs is inverted (+ becomes -, - becomes +). TMDS clock unchanged.
		3	Reverse Output Order	0: Normal Operation 1: CHO data is output on CH 2 and CH 2 data is output on CHO . No change to CH 1 .
0x06	Data Output Drive (0x00)	3:0	Transmit Current	Transmit Drive Current for data signals, adjustable in 0.125 mA steps. Clock current is fixed at 10 mA . 0×0 : 10 mA 0×8 : 11 mA 0xF: 11.875 mA
		7:4	Transmit Pre-emphasis	Drive boost (in 0.125 mA steps) added during first half of each bit period for data signals. Clock signals do not have pre-emphasis. 0x0: OmA 0x8: 1mA 0xF: 1.875 mA

Register Listing (Continued)

ADDRESS	REGISTER (DEFAULT VALUE)	BIT(S)	FUNCTION NAME	DESCRIPTION
0x07	Equalization 1 (0xCC)	3:0	Channel A Equalizer Gain	$\begin{aligned} & \text { Boost }(\mathrm{dB})=1 \mathrm{~dB}+<\text { gain value }>* 0.8 \mathrm{~dB} \\ & 0 \times 0: 1 \mathrm{~dB} \text { boost at } 800 \mathrm{MHz} \\ & 0 \times \mathrm{C}: 10.6 \mathrm{~dB} \text { boost at } 800 \mathrm{MHz} \text { (default) } \\ & \text { 0xF: } 13 \mathrm{~dB} \text { boost at } 800 \mathrm{MHz} \end{aligned}$
		7:4	Channel B Equalizer Gain	
0x08	Equalization 2 (0xCC)	3:0	Channel C Equalizer Gain	$\begin{aligned} & \text { Boost }(\mathrm{dB})=1 \mathrm{~dB}+\text { <gain value }{ }^{*} 0.8 \mathrm{~dB} \\ & 0 \times 0: 1 \mathrm{~dB} \text { boost at } 800 \mathrm{MHz} \\ & 0 \times \mathrm{C}: 10.6 \mathrm{~dB} \text { boost at } 800 \mathrm{MHz} \text { (default) } \\ & \text { 0xF: } 13 \mathrm{~dB} \text { boost at } 800 \mathrm{MHz} \end{aligned}$
		7:4	Channel D Equalizer Gain	
0x09	Test Pattern Generator (0x00)	1:0	Generator Mode	When a 25 MHz to 165 MHz clock is applied to the selected channel's clock input, this function will output a PRBS7 pattern on the TX pins. 0 : Normal operation (test patterns disabled) 1: PRBS7 pattern 2: Low frequency toggle (0000011111...) 3: High frequency toggle (1010101010...) Note: When switching from the high frequency toggle pattern to the low frequency toggle pattern, you must first select normal operation.
		2	Enable PRBS7 Error Counter	Enables PRBS7 error counter in registers 0x0A to 0x0C. 0: Disable PRBS7 Error Counter 1: Enable PRBS7 Error Counter
0x0A	PRBS7 Error Counter Link 0 (read only)	7:0	PRBS7 Error Counter Link 0	PRBS7 Error Counter of Link 0. Saturates at 0xFF. Reading this register clears this register at end of read
0x0B	PRBS7 Error Counter Link 1 (read only)	7:0	PRBS7 Error Counter Link 1	PRBS7 Error Counter of Link 1. Saturates at 0xFF. Reading this register clears this register at end of read
0x0C	PRBS7 Error Counter Link 2 (read only)	7:0	PRBS7 Error Counter Link 2	PRBS7 Error Counter of Link 2. Saturates at 0xFF. Reading this register clears this register at end of read
0x10	PLL Bandwidth (0x10) Recommended default: 0x12	1:0	PLL Bandwidth	Selects between 4 PLL bandwidth settings $0: 4 \mathrm{MHz}$ (silicon default) 1: 2 MHz 2: 1 MHz (recommended default) 3: 500 kHz 1MHz provides slightly better performance with high jitter/ high noise signals.
		7:2	Reserved	Keep set to 000100 binary.

Application Information

The ISL54100, ISL54101, and ISL54102 are TMDS regenerators, locking to the incoming DVI or HDMI signal with triple Clock Data Recovery units (CDRs) and a Phase Locked Loop (PLL). The PLL generates a low jitter pixel clock from the incoming TMDS clock. The TMDS data signals are equalized, sliced by the CDR, re-aligned to the PLL clock, and sent out the TMDS outputs. The ISL54100 and ISL54102 also include an input multiplexer.

Multiplexer Operation

The ISL54100 and ISL54102 have 4:1 and 2:1 (respectively) input multiplexers. After power-up or a hardware reset, the IC defaults to hardware channel selection, using the AUTO_CH_SEL and CH_SEL_x pins. If AUTO_CH_SEL is pulled high, the highest priority channel with an active TMDS clock will be automatically selected (Channel $\mathrm{A}=$ highest priority, $\mathrm{B}=$ second highest priority, $\mathrm{C}=$ second lowest, and $\mathrm{D}=$ lowest priority). If, for example, a DVD player is attached to Channel A , a set-top-box (STB) is attached to Channel B , and a video game is attached to Channel C, the DVD player will have the highest priority, overriding the STB and the video game whenever the DVD player is transmitting a TMDS clock. Likewise, the STB will have higher priority than the video game. Table 1 shows the auto channel selection priority matrix.

TABLE 1. AUTO CHANNEL SELECTION PRIORITIES (ISL54102 OPTIONS IN BLUE)

CHANNEL A	CHANNEL B	CHANNEL C	CHANNEL D	OUTPUT
Inactive	Inactive	Inactive	Inactive	Inactive
Active	Don't Care	Don't Care	Don't Care	Channel A
Inactive	Active	Don't Care	Don't Care	Channel B
Inactive	Inactive	Active	Don't Care	Channel C
Inactive	Inactive	Inactive	Active	Channel D

In the auto channel select mode, the CH_SEL_x pins are outputs indicating the selected channels. Note that in the Power-down mode, the state of the CH_{-}SEL_x pins is undetermined/random.

If manual channel selection is desired, the AUTO_CH_SEL pin should be tied to ground, and the CH_SEL_x pins are inputs, selecting the desired channel.

The input multiplexer can also be controlled by software via the $I^{2} \mathrm{C}$ interface. Software control is initiated by writing a 0 to the Hardware Channel Select bit (bit 3 of register 0x02). In this case, the Auto Channel Select bit (bit 2 of register 0x02) and the Channel Select bits (bits 0 and 1 of register 0x02) perform the same functions as the external pins described above. In the Auto Channel Select mode, the Channel Select bits are read only, indicating the currently selected channel. In the Manual Channel Select mode, the Channel Select bits are read/write, and used to select the channel.

Activity Detection

A channel is considered active using one of two methods. The original default activity detect method (register 0x03b4 = 1) is to measure the common mode of the TMDS clock input for each channel. If the common mode is 3.3 V , it indicates that there is nothing connected to that input, or that whatever is connected is turned off (inactive). This has been found to be relatively unreliable, particularly with weak signals.

The preferred method of activity detection is looking for an active AC signal on the TMDS clock input for that channel (register 0x03b4 = 1). This is more robust, however disconnected inputs will cause both inputs to the differential receiver to be the same level - 3.3V. If the offset error of the differential TMDS receiver is very small, the receiver can not resolve a 1 or a 0 and will randomly switch between states, which may be detected as an active clock. Register 0x03 bits 5 and 6 allow a 10 mV or 20 mV offset to be added to the input stage of the clock inputs, eliminating this problem. This offset will slightly reduce the sensitivity of TMDS receiver for the clock lines, but since the clock signals are much lower frequency than the data, they will not be nearly as attenuated, so this is not a problem in practice.

Again, using the AC activity detection method (register $0 x 03 b 4=0$) is recommended.

Rx Equalization

Registers 0×07 and 0×08 control the amount of equalization applied to the TMDS inputs, with 4 bits of control for each channel. The equalization range available is from a minimum of 1 dB boost to a maximum of 13 dB at 800 MHz , in 0.8 dB increments. Ideally, the equalization is adjusted in the final application to provide optimal performance with the specific DVI/HDMI transmitter and cable used. In general, the amount of equalization required is proportional to the cable length. If the equalization must be fixed (can not be adjusted in the final application), an equalization setting of 0xA works well with short cables as well as medium to longer cables.

Tx Pre-emphasis

The transmit pre-emphasis function sinks additional current during the first bit after every transition, increasing the slew rate for a given capacitance, and helping to maintain the slew rate when using longer/higher capacitance cables. Pre-emphasis is controlled by register 0×06 bits $7: 4$, and ranges from a minimum of 0 mA (no pre-emphasis) to 1.875 mA (max pre-emphasis).

PLL Bandwidth

The 2-bit PLL Bandwidth register controls the loop bandwidth of the PLL used to recover the incoming clock signal. The default 4MHz setting works well in most applications, however a lower bandwidth of 1 MHz has proven to work just as well with good TMDS sources and slightly better with marginal sources.

Power-down

The chip can be placed in a Power-down mode when not in use to conserve power. Setting the Power-down bit (register 0×02 bit 5) to a 1 or pulling the PD input pin high places the chip in a minimal power consumption mode, turning off all TMDS outputs and disconnecting all TMDS inputs. Serial I/O stays operational in PD mode. Note that the PD pin must be low during power-on in order to initialize the $\mathrm{I}^{2} \mathrm{C}$ interface.

Note: When exiting Power-down, a termination resistor Recalibration cycle must be run to re-trim the termination resistors (see register 0x03[7]).

Power Dissipation and Supply Current

Due to the large number of TMDS inputs and outputs, a significant amount of current flows into and out of the SL5410x. This makes calculating the total power dissipation of the ISL5410x slightly more complicated than simply multiplying the supply current by the supply voltage.

The supply current measurement includes the current flowing through all the active TMDS termination resistors. This current is supplied by the ISL54100's V_{D} supplies, but only 15% of it ($0.5 \mathrm{~V} * 10 \mathrm{~mA}$ per TMDS pair) is dissipated as power inside the ISL54100. The majority of the power (2.8 V * 10 mA per active TMDS pair) is dissipated in the TMDS transmitter driving the ISL54100. Likewise, the ISL54100 dissipates 85% of the power generated by the current from the external receiver attached to the ISL54100's Tx pins. Any worst-case on-chip power dissipation calculation needs to account for this.

Inter-Pair (Channel-to-Channel) Skew

The read pointers for Channel 0, 1, and 2 of the FIFO that follows the CDR all have the same clock, so all 3 channels transition within a few picoseconds of each other - there is essentially no skew between the transitions of the three channels.

However the FIFO read pointers may be positioned up to 2 bits apart relative to each other, introducing a random, fixed channel-to-channel skew of skew of 1 or (much less frequently) 2 bits. The random skew is introduced whenever there is a discontinuity in the input signal (typically a video mode change or a new mux channel selection). After the CDRs and PLL lock, the skew is fixed until the next discontinuity. This adds up to 2 bits of skew in addition to any incoming skew, as shown in the following examples.

Figure 2 shows an input (the top three signals) with essentially no skew. After the ISL5410x locks on to the
signal, there may be 1 bit of skew on the output, as shown in Figure 2.

$$
\overline{\text { Bit } 6} \times \text { Bit } 5 \times \text { Bit } 4 \times \text { Bit } 3 \times \text { Bit } 2 \times \text { Bit } 1 \times \text { Bit } 0 \times \text { Bit } 9 \times \text { Bit } 8 \times \text { Bit } 7 \times \mathrm{E}
$$

OUTPUT SKEW (1 bit -615 ps at
$162.5 \mathrm{Mpixels} / \mathrm{s})$ Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 9 Bit 8 B 162.5Mpixels/s)

FIGURE 2. MAXIMUM ADDITIONAL INTERCHANNEL SKEW FOR INPUTS WITH NO OR LITTLE SKEW

When there is pre-existing skew on the input, the ISL5410x can add up to 2 bits to the channel-to-channel skew. In the example in Figure 3, the incoming red channel has 2.3 bits of skew relative to the incoming green and blue. The FIFO's quantization (worst case) increases the total skew to 4.0 bits.

$$
\text { Bit } 4 \times \text { Bit } 3 \times \text { Bit } 2 \times \text { Bit } 10 \times \text { Bit } 9 \times \text { Bit } 8 \times \text { Bit } 5
$$

$$
\begin{aligned}
& \text { OUTPUT SKEW } \\
& \text { (4 bits/2.5ns at } \begin{array}{l}
\text { Bit } 7
\end{array} \times \text { Bit } 6 \times \text { Bit } 5 \times \text { Bit } 4 \times \text { Bit } 3 \times \text { Bit } 2 \times \text { Bit } 1 \times \text { Bit } 0 \times \text { Bit } 9 \times \text { Bit } 8 \times \text { E }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4 bits/2.5ns at Bit } 7 \times \text { Bit } 6 \times \text { Bit } 5 \times \text { Bit } 4 \times \text { Bit } 3 \times \text { Bit } 2 \times \text { Bit } 1 \times \text { Bit } 0 \times \text { Bit } 9>\text { Bit } 8 \times \text { E } \\
& \text { 162.5Mpels/s) }
\end{aligned}
$$

162.5Mpixels/s)

FIGURE 3. MAXIMUM ADDITIONAL INTERCHANNEL SKEW FOR INPUTS WITH MODERATE TO LARGE SKEW

While increasing skew is not desirable, DVI and HDMI receivers are required to have a minimum of 6 bits of interpair skew tolerance, so the addition of 2 bits of skew is only a problem with the most pathological cables and transmitters. It does, however, limit the number of ISL5410xs that can be put in series (although statistically it is unlikely that all the skews would line up in a worst-case configuration).

Typical Performance

Setup A (Figure 4) was used to capture the TMDS eye diagrams shown in Figure 5 and Figure 6:

FIGURE 4. TEST SETUP A
The 162.5Mpixel/s (UXGA 60Hz) DVI output of the Chroma 2326 was terminated into a TPA2 Plug adapter and measured with a LeCroy differential probe and 6 MHz SDA using the LeCroy's software clock recovery. As Figure 5 shows, the amplitude of the TMDS signal is slightly low, but the eye is otherwise acceptable.

FIGURE 5. EYE DIAGRAM AT OUTPUT OF CHROMA GENERATOR

Next, a 15 m DualLink DVI cable was attached and terminated into a female TPA2 adapter and the eye captured in Figure 6.

FIGURE 6. CHROMA EYE DIAGRAM AFTER 15m CABLE

The eye is not meeting the minimum requirements of either the HDMI or DVI standards and the Dell Monitor is unable to recover the data and display an image.

Setup B inserts an ISL54100 and an additional 15m cable between the pattern generator and the monitor:

FIGURE 7. TEST SETUP B
Given the input signal shown in Figure 6, the ISL54100's TMDS output signal (Figure 8) is extremely clean. The output is an improvement over the original signal coming from the pattern generator in both amplitude and jitter.

FIGURE 8. EYE DIAGRAM AT OUTPUT OF ISL54100
The cleaner signal generated at the output of the ISL54100 results in an improved eye at the end of another 15 m cable (Figure 9). The eye is open enough that the Dell 2000FP can now display a UXGA image with no visible sparkle or other artifacts.

FIGURE 9. ISL54100 EYE DIAGRAM AFTER 15m CABLE

Tx Loading Considerations

When the ISL54100 is powered-up and its Tx outputs are disabled, via either the PD (power down) pin, the power-down register bit (register 0x02[5]), or the tri-state outputs bits (register $0 \times 05[1: 0]$), the Tx pins are high impedance. In this state they will draw no current from the Rx pins of any TMDS receiver they may be connected to.

However if power to the ISL54100 is removed, the Tx pins are no longer high-impedance. Figure 10 shows the relevant equivalent circuit, including the internal ESD protection diodes. For simplicity, only one of the eight Tx outputs, ESD protection diodes, and Rx termination resistors are shown.

When V_{D} to the ISL54100 drops below $\sim 2.7 \mathrm{~V}$ and power is applied to the external TMDS receiver, ESD protection diodes inside the ISL54100 can become forward-biased, drawing current from the external TMDS receiver it is attached to.

FIGURE 10. ISL5410x ESD PROTECTION DIODES
This is non-ideal and will cause the ISL5410x to fail HDMI Compliance Test 7-3 ("V VFF"). $_{\text {OFF }}$ is the voltage across each $50 \Omega R x_{N}$ resistor when the power is removed from the device containing the ISL54100.

Modifying the PCB layout per Figure 11 to add a Schottky diode between the V_{D} power net and the V_{D} ESD pins, eliminates current flow from the ESD bus into V_{D}. This reduces the amount of current drawn from the Tx supply, but there is still some circuitry attached to the internal ESD bus that will sink some current. So the current drawn from Rx will be lower than if the diode were not there (reducing the $\mathrm{V}_{\text {OFF }}$ magnitude), but still not low enough to pass Test 7-3.

FIGURE 11. SCHOTTKY DIODE MODIFICATION
Intersil is currently sampling the ISL54100A, the ISL54101A, and the ISL54102A, all of which are fully compliant with Test $7-3$ when applied using the circuit shown in Figure 11. These " A " versions are 100% drop-in compatible with the original version with the sole exception of the CH_{-}SEL_0 and CH_SEL_1 pins, which are bidirectional on the original version but become inputs only on the A version.

Using the new version in a layout designed for the original version (Figure 10) will result in the same behavior as the original version (unless you are using the CH_{2} SEL pins as outputs). See Table 2 for the full matrix.

TABLE 2. VERSION/LAYOUT MATRIX

VERSION	Figure 10	Figure 11
ISL5410x	Fails 7-3, CH_SEL pins are bidirectional	Fails 7-3 (not as badly) CH_SEL pins are bidirectional
ISL5410xA	Fails 7-3, CH_SEL pins are input only	Passes 7-3, CH_SEL pins are input only

Intersil recommends adding the Schottky circuit to all designs to reduce Rx current drain in systems using the original version and completely eliminate it in systems using the " A " version.

PCB Layout Recommendations

Because of the high speed of the TMDS signals, careful PCB layout is critical to maximize performance. The following guidelines should be adhered to as closely as possible:

- All TMDS pair traces should have a characteristic impedance of 50Ω with respect to the power/ground
planes and 100Ω with respect to each other. Failure to meet this requirement will increase reflections, shrinking the available eye.
- Avoid vias for all 3 high speed TMDS pairs. Vias add inductance which causes a discontinuity in the characteristic impedance of the trace. Keep all the traces on the top (or the bottom) of the PCB. The TMDS clock can have vias if necessary, since it is lower speed and less critical. If you must use a via, ensure the vias are symmetrical (put identical vias in both lines of the differential pair).
- For each TMDS channel, the trace lengths of the 3 TMDS pairs (0,1 and 2) should ideally be the same to reduce inter channel skew introduced by the board.
- The trace length of the clock pair is not critical at all. Since the clock is only used as a frequency reference, its phase/delay is inconsequential. In addition, since the TMDS clock frequency is $1 / 10$ th the pixel rate, the clock signal itself is much more noise-immune. So liberties (such as vias and circuitous paths) can be taken when routing the clock lines.
- Minimize capacitance on all TMDS lines. The lower the capacitance, the sharper the rise and fall times.
- Maintain a constant, solid ground (or power) plane under the 3 high speed TMDS signals. Do not route the signals over gaps in the ground plane or over other traces.

EQUIVALENT CIRCUIT

FIGURE 12. SUB-OPTIMAL BYPASS CAPACITOR LAYOUT

- Ideally each supply should be bypassed to ground with a $0.1 \mu \mathrm{~F}$ capacitor. Minimize trace length and vias to minimize inductance and maximize noise rejection. Figure 12 demonstrates a common but non-ideal PCB layout and its equivalent circuit. The additional trace resistance between the bypass capacitor and the power supply/IC reduces its effectiveness. Figure 13 demonstrates a better layout. In this case there is still series trace resistance (it is impossible to completely eliminate it), but now it is being put to good use, as part of a "T" filter, attenuating supply noise before it gets to the IC, and reducing the amount of IC-generated noise that gets injected into the supply. Follow the good supply bypassing rules shown in Figure 13 to the extent possible.

FIGURE 13. OPTIMAL ("T") BYPASS CAPACITOR LAYOUT

ISL5410x Serial Communication

Overview

The ISL5410x uses a 2-wire serial bus for communication with its host. SCL is the Serial Clock line, driven by the host and SDA is the Serial Data line, which can be driven by all devices on the bus. SDA is open drain to allow multiple devices to share the same bus simultaneously.

Communication is accomplished in three steps:

1. The Host selects the ISL5410x it wishes to communicate with.
2. The Host writes the initial ISL5410x Configuration Register address it wishes to write to or read from.
3. The Host writes to or reads from the ISL5410x's Configuration Register. The ISL5410x's internal address pointer auto increments, so to read registers 0×00 through 0x1B, for example, one would write 0x00 in step 2 , then repeat step three 28 times, with each read returning the next register value.
The ISL5410x has a 7-bit address on the serial bus, determined by the ADDR0-ADDR6 bits. This allows up to 128 ISL5410xs to be independently controlled by the same serial bus.

The bus is nominally inactive, with SDA and SCL high. Communication begins when the host issues a START command by taking SDA low while SCL is high (Figure 14). The ISL5410x continuously monitors the SDA and SCL lines for the start condition and will not respond to any command until this condition has been met. The host then transmits the 7-bit serial address plus a R / \bar{W} bit, indicating if the next
transaction will be a Read ($R / \bar{W}=1$) or a Write $(R / \bar{W}=0)$. If the address transmitted matches that of any device on the bus, that device must respond with an ACKNOWLEDGE (Figure 15).

Once the serial address has been transmitted and acknowledged, one or more bytes of information can be written to or read from the slave. Communication with the selected device in the selected direction (read or write) is ended by a STOP command, where SDA rises while SCL is high (Figure 14), or a second START command, which is commonly used to reverse data direction without relinquishing the bus.

Data on the serial bus must be valid for the entire time SCL is high (Figure 16). To achieve this, data being written to the ISL5410x is latched on a delayed version of the rising edge of SCL. SCL is delayed and deglitched inside the ISL5410x for three crystal clock periods (120ns for a 25 MHz crystal) to eliminate spurious clock pulses that could disrupt serial communication.

When the contents of the ISL5410x are being read, the SDA line is updated after the falling edge of SCL, delayed and deglitched in the same manner.

Configuration Register Write

Figure 17 shows two views of the steps necessary to write one or more words to the Configuration Register.

Configuration Register Read

Figure 18 shows two views of the steps necessary to read one or more words from the Configuration Register.

FIGURE 14. VALID START AND STOP CONDITIONS

FIGURE 15. ACKNOWLEDGE RESPONSE FROM RECEIVER

FIGURE 16. VALID DATA CHANGES ON THE SDA BUS

Signals the beginning of serial I/O

ISL5410x Device Select Address Write

The first 7 bits of the first byte select the ISL54100 on the 2-wire bus at the address set by the $\operatorname{ADDR}[6: 0\}$ pins. The R / \bar{W} bit is a 0 , indicating that the next transaction will be a write.

ISL5410x Register Address Write
 This is the address of the ISL5410x's configuration register that

 the following byte will be written to.ISL5410x Register Data Write(s)
This is the data to be written to the ISL5410x's configuration register. Note: The ISL5410x's Configuration Register's address pointer auto increments after each data write: repeat this step to write multiple sequential bytes of data to the Configuration Register.

STOP Command				
Signals from the Host	S			
	${ }^{\text {T }}$ Serial Bus	Register	Data	S
	A Address	Address	Write*	O
	T	-	\cdots	P
	Na,a,a,a,a,a,0 AAAAAAAA		d d d d d d d d d d d d d ${ }^{\text {d }}$	
SDA Bus				
Signals from				c
the ISL5410x				K

Signals the ending of serial I/O

* The data write step may be repeated to write to the ISL5410x's Configuration Register sequentially, beginning at the Register Address written in the previous step.

FIGURE 17. CONFIGURATION REGISTER WRITE

* The data read step may be repeated to read from the ISL5410x's Configuration Register sequentially, beginning at the Register Address written in the two steps previous.

Datasheet Changes from FN6275.4

- Added note to description on front page describing specific HDMI 1.3a features supported. Spelled out TMDS acronym.
- Added additional information to pins 74 and 95 , noting that they are called V_{D} ESD pins and should be connected to V_{D} ESD via a Schottky diode.
- Fixed typo on Register 0x05's Reverse Output Order bit. It was labelled as bit 4, it is now correctly labelled as bit 3 .
- Added TEST pin to Pin Descriptions table.
- Added Note 2 (emphasizing that operation above 165 MHz is not guaranteed) to electrical specs.
- Changed description of register Ox03's Activity Detect bits and recommended new settings to improve accuracy of the activity detect function.
- Added note to recommend Recalibration (register 0x03b7) after supply and temp have settled.
- Changed recommended PLL Bandwidth (register 0x10) setting to 1 MHz
- Added "Tx Loading Considerations" section on page 16.
- Updated Pb-free note to new verbiage.
- Updated Note 2 to new verbiage.

Metric Plastic Quad Flatpack Packages (MQFP)

MDP0055
14x20mm 128 LEAD MQFP (WITH AND WITHOUT HEAT SPREADER) 3.2mm FOOTPRINT

SYMBOL	DIMENSIONS (MILLIMETERS)	REMARKS
A	Max 3.40	Overall height
A1	$0.250 \sim 0.500$	Standoff
A2	2.750 ± 0.250	Package thickness
α	$0^{\circ} \sim 7^{\circ}$	Foot angle
b	0.220 ± 0.050	Lead width 1
b1	0.200 ± 0.030	Lead base metal width 1
D	17.200 ± 0.250	Lead tip to tip
D1	14.000 ± 0.100	Package length
E	23.200 ± 0.250	Lead tip to tip
E1	20.000 ± 0.100	Package width
e	0.500 Base	Lead pitch
L	0.880 ± 0.150	Foot length
L1	1.600 Ref.	Lead length
T	0.170 ± 0.060	Frame thickness 1
T1	0.152 ± 0.040	Frame base metal thickness 1
ccc	0.100	Foot coplanarity
ddd	0.100	Foot position

Rev. 2 2/07
NOTES:

1. General tolerance: Distance ± 0.100, Angle $+2.5^{\circ}$.
2. 1 Matte finish on package body surface except ejection and pin 1 marking (Ra 0.8~2.0um).
3. All molded body sharp corner RADII unless otherwise specified (Max RO.200).
4. Package/Leadframe misalignment (X, Y): Max. 0.127
5. Top/Bottom misalignment (X, Y): Max. 0.127
6. Drawing does not include plastic or metal protrusion or cutting burr.
7. 2 Compliant to JEDEC MS-022.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:
105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»
Телефон: +7 495 668-12-70 (многоканальный)
Факс: +7 495 668-12-70 (доб.304)
E-mail: info@moschip.ru
Skype отдела продаж:
moschip.ru
moschip.ru_6
moschip.ru_4
moschip.ru_9

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

