Finisar

Product Specification

10Gb/s, 40km Single Mode, Multi-Rate SFP+ Transceiver FTLX1672D3BCL

PRODUCT FEATURES

- Hot-pluggable SFP+ footprint
- 8.5 through 11.3 Gb/s bit rates
- 40km link length
- -5/70°C case temperature range
- Cooled 1550nm EML laser
- Limiting electrical interface receiver
- Duplex LC connector
- Built-in digital diagnostic functions
- RoHS-6 compliant (lead-free)

APPLICATIONS

- 10GBASE-ER/EW & 10G Fibre Channel
- OTN G.709 OTU1e/2/2e FEC bit rates
- 8.5Gb/s Fibre Channel

Finisar's FTLX1672D3BCL transceivers are Enhanced Small Form Factor Pluggable SFP+ transceivers designed for use in 10-Gigabit multi-rate links up to 40km of G.652 single mode fiber. They are compliant with SFF-8431¹, SFF-8432² and 10GBASE-ER, and support 10G Fibre Channel over 40km links.

Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8472³. Finisar's FTLX1672D3BCL transceivers are RoHS compliant^{4, 5}.

PRODUCT SELECTION

FTLX1672D3BCL

I. Pin Descriptions

Pin	Symbol	Name/Description	Ref.
1	V_{EET}	Transmitter Ground	1
2	T_{FAULT}	Transmitter Fault	2
3	T_{DIS}	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line	2
5	SCL	2-wire Serial Interface Clock Line	2
6	MOD_ABS	Module Absent. Grounded within the module	2
7	RS0	Rate Select 0.	4
8	RX_LOS	Loss of Signal indication. Logic 0 indicates normal operation.	5
9	RS1	Rate Select 1.	4
10	$ m V_{EER}$	Receiver Ground	1
11	$ m V_{EER}$	Receiver Ground	1
12	RD-	Receiver Inverted DATA out. AC Coupled.	
13	RD+	Receiver Non-inverted DATA out. AC Coupled.	
14	$ m V_{EER}$	Receiver Ground	1
15	V_{CCR}	Receiver Power Supply	6
16	V_{CCT}	Transmitter Power Supply	6
17	$ m V_{EET}$	Transmitter Ground	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V_{EET}	Transmitter Ground	1

Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. T_{FAULT} is an open collector/drain output, which should be pulled up with a 4.7k-10k Ohms resistor on the host board if intended for use. Pull up voltage should be between 2.0V to Vcc+0.3V. A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.
- 3. Laser output disabled on $T_{DIS} > 2.0V$ or open, enabled on $T_{DIS} < 0.8V$.
- 4. Internally pulled down per SFF-8431 Rev 4.1.
- 5. LOS is open collector output. Should be pulled up with $4.7k 10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.
- 6. Internally connected

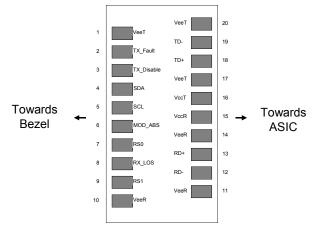


Figure 1. Diagram of Host Board Connector Block Pin Numbers and Names.

II. Absolute Maximum Ratings

Exceeding the limits below may damage the transceiver module permanently.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		4.0	V	
Storage Temperature	T_{S}	-40		85	°C	
Relative Humidity	RH	0		85	%	1
Receiver Optical Damage Threshold	RxDamage	5			dBm	

Notes:

1. Non-condensing

III. Electrical Characteristics ($T_{OP} = -5$ to 70 °C)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	V_{CC}	3.14	3.30	3.46	V	
Power Consumption	P_{diss}			1.5	W	1
Transmitter (Tx)						
Input differential impedance	R _{in}	80	100	120	Ω	
Differential data input swing	$V_{in,pp}$	120		850	mV	2
Transmit Disable Voltage	V_{D}	Vcc-0.8		Vcc	V	
Transmit Enable Voltage	$V_{\rm EN}$	0		0.8	V	
Receiver (Rx)						
Output differential impedance	R _{out}	80	100	120	Ω	
Differential data output swing	$V_{out,pp}$	300		850	mV	2
Output rise time and fall time	T_r, T_f	28			ps	3
LOS asserted	V _{LOS A}	Vcc-0.8		Vcc	V	4
LOS de-asserted	V _{LOS D}	0		0.8	V	4
Power Supply Noise Tolerance	V_{CCT}/V_{CCR}	Per SF	F-8431 R	lev 4.1	mVpp	5

Notes:

- 1. Measured at 70°C, 3.3V and beginning of life.
- 2. Internally AC coupled.
- 3. 20 80%. Measured with Module Compliance Test Board and OMA test pattern. Use of four 1's and four 0's sequence in the PRBS 9 is an acceptable alternative. SFF-8431 Rev 4.1.
- 4. LOS is an open collector output. Should be pulled up with $4.7k\Omega 10k\Omega$ on the host board. Normal operation is logic 0; loss of signal is logic 1.
- 5. See Section 2.8.3 of SFF-8431 Rev 4.1.

Optical Characteristics ($T_{OP} = -5$ to 70 °C, $V_{CC} = 3.14$ to 3.46 V) IV.

Parameter			Symbol	Min	Тур	Max	Unit	Ref.
Transmitter (Tx)								
Launch Power		Average	P _{AVE}	-1		2	dBm	
Laulich i Owei		OMA	P _{OMA-TDP}	-2.1			dBm	1
Optical Wavelength			λ	1530		1565	nm	
Side-Mode Suppression	Ratio		SMSR	30			dB	
Optical Extinction Ratio)		ER	8.2			dB	
Average Launch power	when Tx is	OFF	P_{OFF}			-30	dBm	
Relative Intensity Noise			RIN			-128	dB/Hz	
Transmitter and Dispers	ion Penalty		TDP			3	dB	
Receiver (Rx)								
Optical Center Wavelen	gth		$\lambda_{ m C}$	1260		1600	nm	
Receiver Reflectance			R_{rx}			-27	dB	
	10.70	Average	R _{S AVE1}			-16	dBm	1,2
Sensitivity	10.7G	OMA	R _{S OMA}			-14.1	dBm	2,3
	11.3G	Average	R _{S AVE2}			-15	dBm	1,2
Stressed Sensitivity	10.3G	OMA	R_{SRS}			-11.3	dBm	2,3
Overload			R _{OVL}	-1			dBm	2,3
Path Penalty			PP			2	dB	
LOS De-Assert			LOS_D			-21	dBm	
LOS Assert			LOS_A	-29			dBm	
LOS Hysteresis	-		LOS _H	0.5			dB	

- Measured with worst ER=8.2dB
 PRBS 2³¹ 1 and BER<1E⁻¹²
- 3. Measured with worst ER=3.0 dB

V. General Specifications

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate	BR	8.5		11.3168	Gb/s	1
Max. Supported Link Length	L_{MAX}			40	km	2

Notes:

- Tested with a 2³¹ 1 PRBS pattern at the BER defined in Table IV.
 Over G.652 single mode fiber.

Timing Parameters

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Time to initialize	t_start_up			10	S	

Environmental Specifications VI.

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T_{op}	-5		70	°C	
Storage Temperature	T_{sto}	-40		85	°C	

VII. Regulatory Compliance

Finisar transceivers are Class 1 Laser Products and comply with US FDA regulations. These products are certified by TÜV and CSA to meet the Class 1 eye safety requirements of EN (IEC) 60825 and the electrical safety requirements of EN (IEC) 60950. Copies of certificates are available at Finisar Corporation upon request.

VIII. Digital Diagnostic Functions

Finisar FTLX1672D3BCL SFP+ transceivers support the 2-wire serial communication protocol as defined in the SFP MSA¹. It is very closely related to the E²PROM defined in the GBIC standard, with the same electrical specifications.

The standard SFP serial ID provides access to identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information.

Additionally, Finisar SFP+ transceivers provide a enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags, which alerts end-users when particular operating parameters are outside of a factory set normal range.

The SFP MSA defines a 256-byte memory map in E²PROM that is accessible over a 2-wire serial interface at the 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8 bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged. The interface is identical to, and is thus fully backward compatible with both the GBIC Specification and the SFP Multi Source Agreement. The complete interface is described in Finisar Application Note AN-2030: "Digital Diagnostics Monitoring Interface for SFP Optical Transceivers".

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through a 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL, Mod Def 1) is generated by the host. The positive edge clocks data into the SFP transceiver into those segments of the E²PROM that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA, Mod Def 2) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

For more information, please see the SFP MSA documentation³ and Finisar Application Note AN-2030⁷.

Please note that evaluation board FDB-1027 is available with Finisar ModDEMO software that allows simple to use communication over the 2-wire serial interface.

IX. Digital Diagnostic Specifications

FTLX1672D3BCL transceivers can be used in host systems that require either internally or externally calibrated digital diagnostics.

Parameter	Symbol	Units	Min	Max	Accuracy	Ref.
Accuracy						
Transceiver temperature	$\Delta \mathrm{DD}_{\mathrm{Temp-C}}$	°C	-5	+75	±5°C	1
Transceiver supply voltage	$\Delta DD_{Voltage}$	V	2.8	4.0	±3%	
Transmitter bias current	$\Delta \mathrm{DD}_{\mathrm{Bias}}$	mA	0	127	±10%	2
Transmitter output power	$\Delta DD_{Tx-Power}$	dBm	-2	+3	±2dB	
Receiver average optical input power	$\Delta DD_{Rx-Power}$		-20	+1	±2dB	

Notes:

- 1. Internally measured
- 2. The accuracy of the Tx bias current is 10% of the actual current from the laser driver to the laser

X. SFF-8431 Power-up Sequence

The typical power consumption of the FTLX1672D3BCL exceeds the limit of 1W specified for the Power Level I transceivers in [1], for which a power-up sequence is recommended. However, the FTLX1672D3BCL is factory set to power-up directly to its operating conditions in Power Level Mode II. Upon request, it can be factory set to follow the power-up sequence specified for transceivers exceeding 1W, as per [1]. In power level I, the FTLX1672D3BCL does not carry traffic, but the 2-wire serial communication is active.

Please refer to [1] and Finisar Application Note AN-2076 for additional details.

XI. Mechanical Specifications

Finisar FTLX1672D3BCL SFP+ transceivers are compatible with the SFF-8432 specification for improved pluggable form factor, and shown here for reference purposes only. Bail color is red.

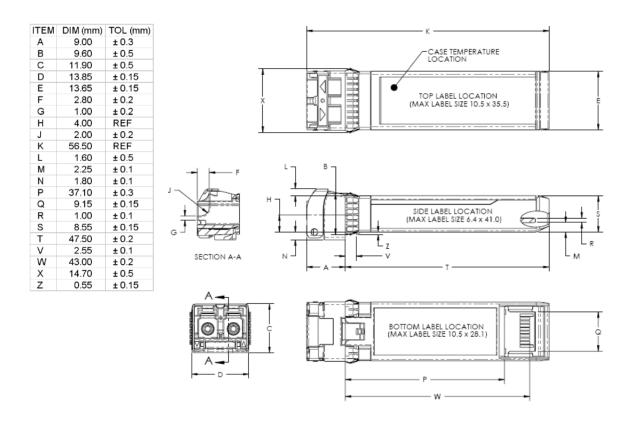


Figure 2. Mechanical Dimensions

Note: the option of the label on the top side of the transceiver is not recommended.

XII. Host Board SFP+ Connector Recommendations

⚠atum and Basic Dimension Established by Customer ⚠Rads and Vias are Chassis Ground, 11 Places ⚠Through Holes are Unplated

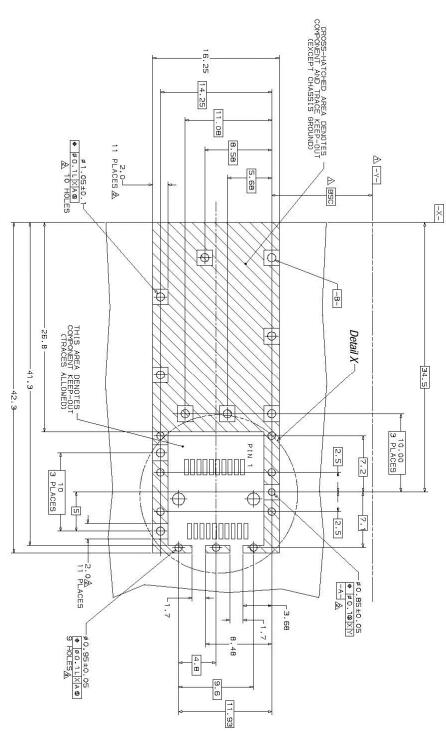
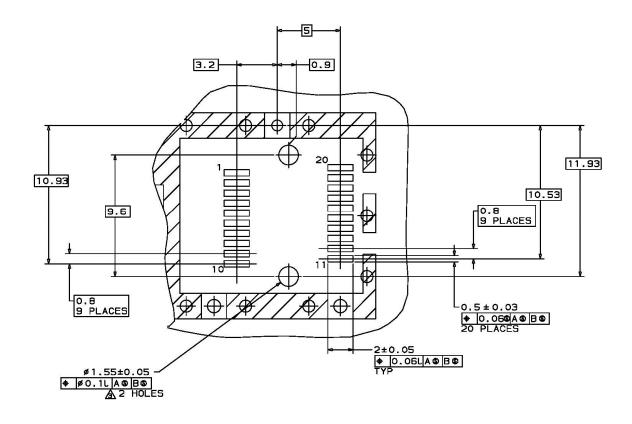
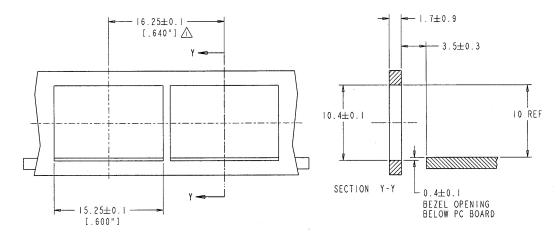
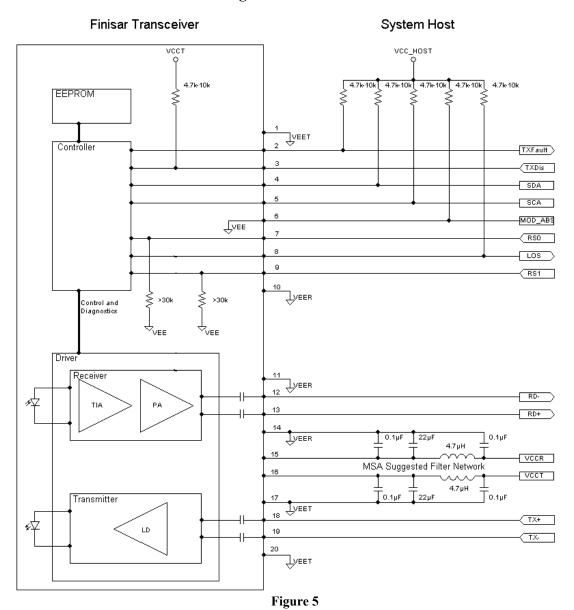




Figure 3. PCB Layout and Bezel Recommendations, as per [9]


NOTES:

 $\stackrel{\textstyle \frown}{\bigtriangleup}$ MINIMUM PITCH ILLUSTRATED, ENGLISH DIMENSIONS ARE FOR REFERENCE ONLY

2. NOT RECOMMENDED FOR PCI EXPANSION CARD APPLICATIONS

Figure 4

XIII. Host-Module Interface Diagram

XIV. References

- 1. "Specifications for Enhanced 8.5 and 10 Gigabit Small Form Factor Pluggable Module 'SFP+ '", SFF Document Number SFF-8431, Revision 4.1.
- 2. "Improved Pluggable Form factor", SFF Document Number SFF-8432, Revision 4.2, April 18, 2007.
- 3. "Digital Diagnostics Monitoring Interface for Optical Transceivers". SFF Document Number SFF-8472, Revision 10.1, March 1, 2007.
- 4. Directive 2011/65/EU of the European Council Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment". 08-June 2011, which supersedes the previous ROHS Directive 2002/95/EC.
- 5. "Application Note AN-2038: Finisar Implementation of RoHS Compliant Transceivers", Finisar Corporation, January 21, 2005.
- 6. Small Form-factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA)
- 7. "Application Note AN-2030: Digital Diagnostic Monitoring Interface for SFP Optical Transceivers"

XV. For More Information

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9