

Preliminary Product Specification

9.8304 Gigabit RoHS Compliant Long-Wavelength SFP+ Transceiver

FTLX1370W4BTL

PRODUCT FEATURES

- Up to 9.8304 Gb/s bi-directional data links
- Hot-pluggable SFP+ footprint
- Built-in digital diagnostic functions
- Duplex LC connector
- RoHS compliant and Lead Free
- Up to 1.4 km at 9.8304 Gb/s on 9/125µm SMF
- Metal enclosure, for lower EMI
- Single 3.3V power supply
- Industrial operating temperature range: -40°C to 85°C
- 1 Watt Maximum Power Consumption

APPLICATIONS

- 2.457 Gb/s CPRI
- 3.072 Gb/s CPRI/LTE
- 4.915 Gb/s CPRI/LTE
- 6.144 Gb/s CPRI/OBSAI/LTE
- 9.8304 Gb/s CPRI/LTE

Finisar's FTLX1370W4BTL SFP+ transceivers are designed for use in Wireless basestation links up to 1.4 km at up to 9.8304 Gb/s data rates for CPRI, OBSAI, LTE, or other Wireless applications. They are compliant with SFF-8431¹, SFF-8432², SFF-8472 Rev 10.2³, CPRI Rev 5.0⁶, and OBSAI Rev V4.2⁷. The optical transceiver is compliant per the RoHS Directive 2011/65/EU. See Finisar Application Note AN-2038 for more details.

PRODUCT SELECTION

FTLX1370W4BTL

I. Pin Descriptions

Pin	Symbol	Name/Description	Ref.
1	$ m V_{EET}$	Transmitter Ground	1
2	T_{FAULT}	Transmitter Fault	2
3	T_{DIS}	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line	2
5	SCL	2-wire Serial Interface Clock Line	2
6	MOD_ABS	Module Absent. Grounded within the module	2
7	RS0	Rate Select 0. Not Used.	4
8	RX_LOS	Loss of Signal indication. Logic 0 indicates normal operation.	5
9	RS1	Rate Select 1. Not Used.	4
10	$ m V_{EER}$	Receiver Ground	1
11	$ m V_{EER}$	Receiver Ground	1
12	RD-	Receiver Inverted DATA out. AC Coupled.	
13	RD+	Receiver Non-inverted DATA out. AC Coupled.	
14	$ m V_{EER}$	Receiver Ground	1
15	V_{CCR}	Receiver Power Supply	
16	V_{CCT}	Transmitter Power Supply	
17	$ m V_{EET}$	Transmitter Ground	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	$V_{ ext{EET}}$	Transmitter Ground	1

- 1. Circuit ground is internally isolated from chassis ground.
- 2. T_{FAULT} is an open collector/drain output, which should be pulled up with a 4.7k-10k Ohms resistor on the host board if intended for use. Pull up voltage should be between 2.0V to Vcc+0.3V. A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.
- 3. Laser output disabled on $T_{DIS} > 2.0V$ or open, enabled on $T_{DIS} < 0.8V$.
- 4. Internally pulled down per SFF-8431 Rev 4.1.
- 5. LOS is open collector output. Should be pulled up with $4.7k 10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

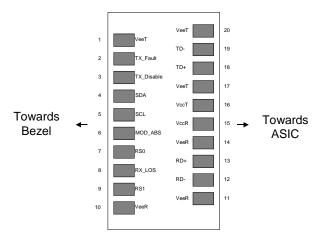


Figure 1. Diagram of Host Board Connector Block Pin Numbers and Names.

II. Absolute Maximum Ratings

Exceeding the limits below may damage the transceiver module permanently.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		4.0	V	
Storage Temperature	T_{S}	-40		85	°C	
Relative Humidity	RH	0		85	%	1

^{1.} Non-condensing.

III. Electrical Characteristics ($T_{OP} = -40$ to 85 °C, $V_{CC} = 3.14$ to 3.46 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc	3.14	3.30	3.46	V	
Supply Current	Icc			430	mA	
Transmitter						
Input differential impedance	R_{in}		100		Ω	1
Differential data input swing	Vin,pp	180		2400	mV	
Transmit Disable Voltage	V_{D}	2		Vcc	V	
Transmit Enable Voltage	$V_{\rm EN}$	Vee		Vee+ 0.8	V	
Receiver						
Differential data output swing	Vout,pp	300		850	mV	2,6
Output rise time and fall time	T_r, T_f	28			ps	3
LOS Fault	V _{LOS fault}	2		Vcc_{HOST}	V	4
LOS Normal	$V_{LOS\ norm}$	Vee		Vee+0.8	V	4
Power Supply Noise Tolerance	VccT/VccR	Per Sl	FF-8431	Rev 4.1	mVpp	5

- 1. Connected directly to TX data input pins. AC coupling from pins into laser driver IC.
- 2. Into 100Ω differential termination.
- 3. 20 80%. Measured with Module Compliance Test Board and OMA test pattern. Use of four 1's and four 0's sequence in the PRBS 9 is an acceptable alternative. SFF-8431 Rev 4.1.
- 4. LOS is an open collector output. Should be pulled up with $4.7k\Omega 10k\Omega$ on the host board. Normal operation is logic 0; loss of signal is logic 1.
- 5. See Section 2.8.3 of SFF-8431 Rev 4.1.
- 6. The FTLX1370D3BTL is a "limiting module", i.e., it employs a limiting receiver. Host board designers using an EDC PHY IC should follow the IC manufacturer's recommended settings for interoperating the host-board EDC PHY with a limiting receiver SFP+ module.

Optical Characteristics (T_{OP} = -40 to 85 °C, V_{CC3} = 3.14 to 3.46 Volts) IV.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.		
Transmitter								
Optical Modulation Amplitude (OMA)	P _{OMA}	-5.2			dBm			
Average Launch Power	P _{AVE}	-8.2		+0.5	dBm	1		
Extinction Ratio	ER	3.5			dB			
Optical Wavelength	λ	1260		1355	nm			
Transmitter and Dispersion Penalty	TDP			3.4	dB			
Average Launch power of OFF transmitter	P _{OFF}			-30	dBm			
Tx Jitter	Tx_j	Per 802.3ae requirements						
Relative Intensity Noise	RIN			-128	dB/Hz			
Receiver								
Receiver Sensitivity (OMA) @ 9.8304Gb/s	R _{SENS1}			-12.6	dBm	2		
Average Receive Power	P _{AVE}			+0.5	dBm			
Optical Center Wavelength	λ_{C}	1260		1600	nm			
Receiver Reflectance	R_{rx}			-12	dB			
LOS De-Assert	LOS_D			-17	dBm			
LOS Assert	LOS _A	-30			dBm			
LOS Hysteresis		0.5			dB			

- Average power figures are informative only, per IEEE 802.3ae.
 Valid between 1260 and 1355 nm. Measured with worst ER; BER<10⁻¹²; 2³¹ 1 PRBS.

V. General Specifications

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate	BR	2.4576		9.8304	Gb/s	
Bit Error Ratio	BER			10 ⁻¹²		1
Max. Supported Link Length	L_{MAX}		1.4		km	

Notes:

VI. Environmental Specifications

Finisar FTLX1370W4BTL transceivers have an operating temperature range from -40°C to +85°C case temperature.

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T_{op}	-40		85	°C	
Storage Temperature	T_{sto}	-40		85	°C	

VII. Regulatory Compliance

Finisar transceivers are Class 1 Laser Products and comply with US FDA regulations. These products are certified by TÜV and CSA to meet the Class 1 eye safety requirements of EN (IEC) 60825 and the electrical safety requirements of EN (IEC) 60950. Copies of certificates are available at Finisar Corporation upon request.

 $[\]overline{1}$. Tested with a $2^{31} - 1$ PRBS.

VIII. Digital Diagnostic Functions

Finisar FTLX1370W4BTL SFP+ transceivers support the 2-wire serial communication protocol as defined in the SFP MSA¹. It is very closely related to the E²PROM defined in the GBIC standard, with the same electrical specifications.

The standard SFP serial ID provides access to identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information.

Additionally, Finisar SFP+ transceivers provide a enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags, which alerts end-users when particular operating parameters are outside of a factory set normal range.

The SFP MSA defines a 256-byte memory map in E²PROM that is accessible over a 2-wire serial interface at the 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8 bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged. The interface is identical to, and is thus fully backward compatible with both the GBIC Specification and the SFP Multi Source Agreement. The complete interface is described in Finisar Application Note AN-2030: "Digital Diagnostics Monitoring Interface for SFP Optical Transceivers".

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through a 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL, Mod Def 1) is generated by the host. The positive edge clocks data into the SFP transceiver into those segments of the E²PROM that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA, Mod Def 2) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

For more information, please see the SFP MSA documentation^{1,5} and Finisar Application Note AN-2030.

Please note that evaluation board FDB-1027 is available with Finisar ModDEMO software that allows simple to use communication over the 2-wire serial interface.

IX. Digital Diagnostic Specifications

FTLX1370W4BTL transceivers can be used in host systems that require either internally or externally calibrated digital diagnostics.

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Accuracy						
Internally measured transceiver temperature	$\Delta DD_{Temperature}$			3	°C	
Internally measured transceiver supply voltage	$\Delta \mathrm{DD}_{\mathrm{Voltage}}$			3	%	
Measured TX bias current	$\Delta \mathrm{DD}_{\mathrm{Bias}}$			10	%	1
Measured TX output power	$\Delta \mathrm{DD}_{\mathrm{Tx ext{-}Power}}$			2	dB	
Measured RX received average optical power	$\Delta \mathrm{DD}_{\mathrm{Rx-Power}}$			2	dB	
Dynamic Range for Rated Accura	cy				•	
Internally measured transceiver temperature	$\mathrm{DD}_{\mathrm{Temperature}}$	-40		85	°C	
Internally measured transceiver supply voltage	$\mathrm{DD}_{\mathrm{Voltage}}$	3.1		3.5	V	
Measured TX bias current	$\mathrm{DD}_{\mathrm{Bias}}$	10		70	mA	
Measured TX output power	DD _{Tx-Power}	-8.2		+0.5	dBm	
Measured RX received average optical power	DD _{Rx-Power}	-14.2		+0.5	dBm	
Max Reporting Range					•	
Internally measured transceiver temperature	$\mathrm{DD}_{\mathrm{Temperature}}$	-40		125	°C	
Internally measured transceiver supply voltage	$\mathrm{DD}_{\mathrm{Voltage}}$	2.8		4.0	V	
Measured TX bias current	$\mathrm{DD}_{\mathrm{Bias}}$	0		100	mA	
Measured TX output power	DD _{Tx-Power}	-10		+2	dBm	
Measured RX received average optical power	DD _{Rx-Power}	-22		+2	dBm	

^{1.} Accuracy of measured Tx bias current is 10% of the actual bias current from the laser driver to the laser.

X. Mechanical Specifications

Finisar FTLX1370W4BTL SFP+ transceivers are compatible with the SFF-8432 specification for improved pluggable form factor, and shown here for reference purposes only. Bail color is blue.

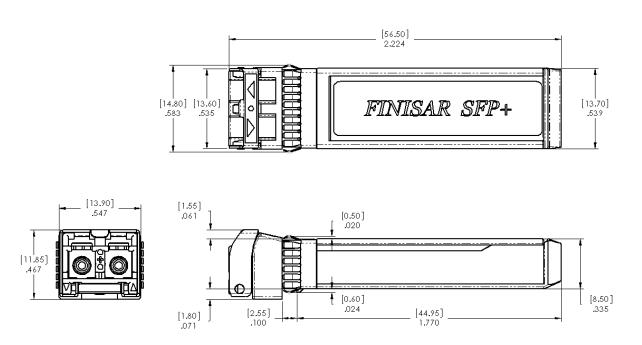
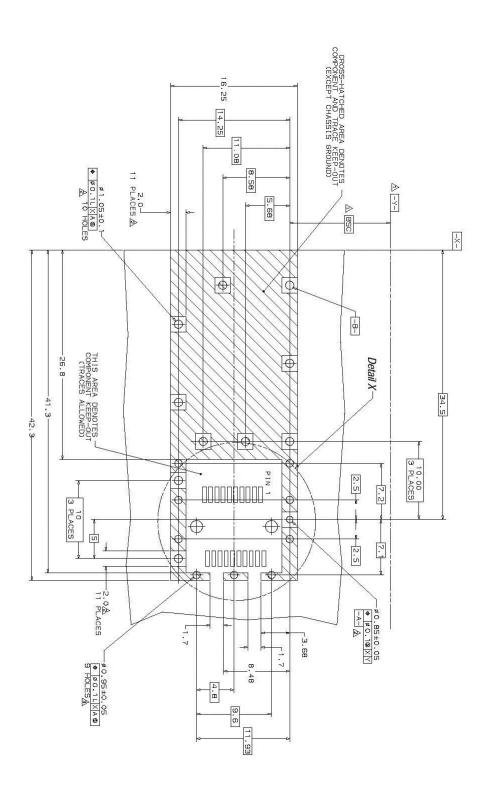
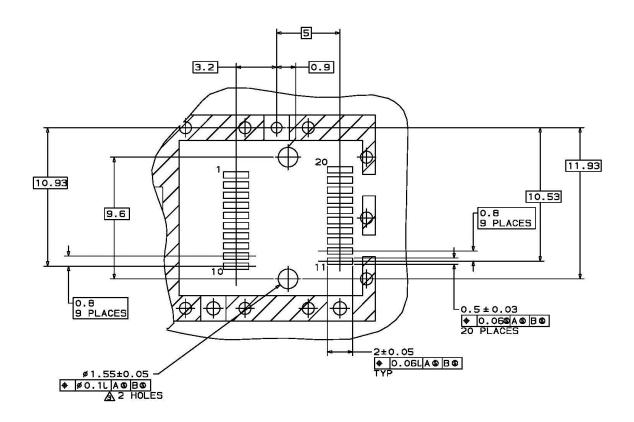
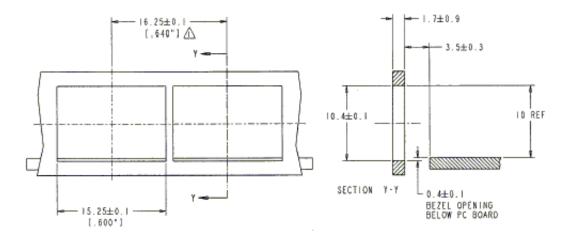
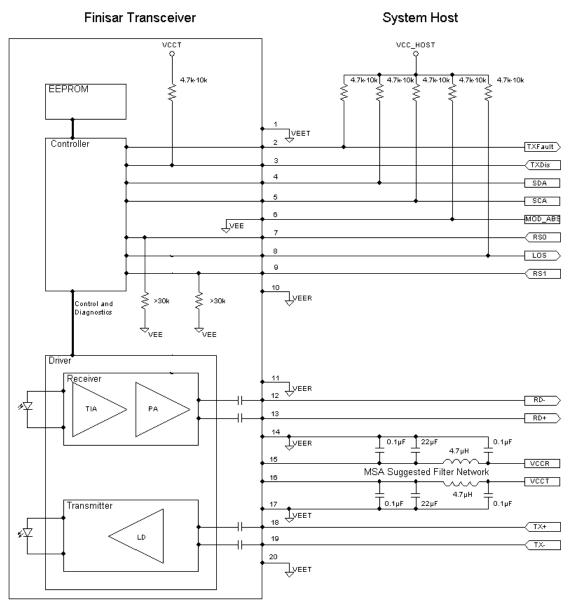



Figure 2. FTLX1370RDBTL Mechanical Dimensions.




XI. PCB Layout and Bezel Recommendations

<u>Ag</u>tum and Basic Dimension Established by Customer
<u>Ag</u>Rads and Vias are Chassis Ground, 11 Places
<u>Ag</u>Through Holes are Unplated


NOTES:

AN INIMUM PITCH ILLUSTRATED, ENGLISH DIMENSIONS ARE FOR REFERENCE ONLY

 NOT RECOMMENDED FOR PCI EXPANSION CARD APPLICATIONS

XII. Host - Transceiver Interface Block Diagram

Figure 6-Host-Module Interface

XIII. References

- 1. "Specifications for Enhanced 8.5 and 10 Gigabit Small Form Factor Pluggable Module 'SFP+ '", SFF Document Number SFF-8431, Revision 3.0, May 8, 2008.
- 2. "Improved Pluggable Formfactor", SFF Document Number SFF-8432, Revision 5.0, July 16, 2007.
- 3. "Digital Monitoring Interface for Optical Transceivers", SFF Document Number SFF-8472, Revision 10.2, June 1, 2007.
- 4. Directive 2011/65/EU of the European Council Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment."
- 5. Small Form Factor Pluggable (SFP) Transceiver Multi-source Agreement (MSA), September 14, 2000.
- 6. "CPRI Specification V6.1". Common Public Radio Interface. July 1, 2014.
- 7. "Reference Point 3 Specification". Open Base Station Architecture Initiative. March 2010.

XIV. For More Information

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1134 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com

Data subject to change without notice.

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9