LTC5543

■ Conversion Gain: 8.4dB at 2500 MHz

- IIP3: 24.5 dBm at 2500 MHz
- Noise Figure: 10.2 dB at 2500 MHz
- 17.5dB NF Under +5dBm Blocking
- High Input P1dB
- 3.3V Supply, 660mW Power Consumption
- Shutdown Pin
- 50Ω Single-Ended RF and LO Inputs
- LO Inputs 50Ω Matched when Shutdown
- High Isolation LO Switch
- OdBm LO Drive Level
- High LO-RF and LO-IF Isolation
- Small Solution Size
- 20-Lead ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$) QFN package

APPLICATIONS

- Wireless Infrastructure Receivers
(LTE, WiMAX, WCS)
- Point-To-Point Microwave Links
- High Dynamic Range Downmixer Applications
$\mathbf{\Sigma T}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

Downconverting Mixer DESCRIPTION

The LTC®5543 is part of a family of high dynamic range, high gain passive downconverting mixers covering the 600MHzto 4GHzfrequency range. The LTC5543 is optimized for2.3GHz to 4GHz RF applications. The LO frequency must fall within the 2.4 GHz to 3.6 GHz range for optimum performance. A typical application is a LTE or WiMAX receiver with a 2.3GHz to 2.7 GHz RF input and high-side LO.

The LTC5543 is designed for 3.3V operation, however; the IF amplifier can be powered by 5V for the highest P1dB. An integrated SPDT LO switch with fast switching accepts two active LO signals, while providing high isolation.

The LTC5543's high conversion gain and high dynamic range enable the use of lossy IF filters in high-selectivity receiver designs, while minimizing the total solution cost, board space and system-level variation.

High Dynamic Range Downconverting Mixer Family

PART\#	RF RANGE	LO RANGE
LTC5540	$600 \mathrm{MHz}-1.3 \mathrm{GHz}$	$700 \mathrm{MHz}-1.2 \mathrm{GHz}$
LTC5541	$1.3 \mathrm{GHz}-2.3 \mathrm{GHz}$	$1.4 \mathrm{GHz}-2.0 \mathrm{GHz}$
LTC5542	$1.6 \mathrm{GHz}-2.7 \mathrm{GHz}$	$1.7 \mathrm{GHz}-2.5 \mathrm{GHz}$
LTC5543	$\mathbf{2 . 3 G H z}-\mathbf{4 G H z}$	$\mathbf{2 . 4 G H z}-\mathbf{3 . 6 G H z}$

TYPICAL APPLICATION

ABSOLUTE MAXIMUM RATIOGS(Note 1)
Mixer Supply Voltage ($\mathrm{V}_{\mathrm{CC1}}, \mathrm{~V}_{\mathrm{CC} 2}$) 3.8 V
LO Switch Supply Voltage (VCC3) 3.8 V
IF Supply Voltage (IF $^{+}$, IF- 5.5V
Shutdown Voltage (SHDN)

\qquad
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
LO Select Voltage (LOSEL) -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
L01, LO2 Input Power (2GHz to 4GHz) 9dBm
L01, L02 Input DC Voltage $\pm 0.5 \mathrm{~V}$
RF Input Power (2GHz to 4GHz) 15dBm
RF Input DC Voltage $\pm 0.1 \mathrm{~V}$
Operating Temperature Range

\qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range

\qquad
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$Junction Temperature (T_{J})$150^{\circ} \mathrm{C}$

PIn CONFIGURATIOn

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC5543IUH\#PBF	LTC5543IUH\#TRPBF	5543	$20-$ Lead $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$ Plastic QFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

AC ELECTRICAL CHARACTERISTICS
 $V_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {CCIF }}=3.3 \mathrm{~V}, S H D N=\operatorname{Low}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}$,

unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)

LTC5543

AC ELECTRICAL CHARACTERISTICS $\quad v_{c c}=3.3 v, V_{C C I F}=3.3 V, S H D N=L o w, T_{A}=25^{\circ} C, P_{L 0}=0 d B m$,
$P_{\mathrm{RF}}=-3 \mathrm{dBm}(\Delta \mathrm{f}=2 \mathrm{MHz}$ for two-tone IIP3 tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)
High-Side LO Downmixer Application: $\mathrm{RF}=2300 \mathrm{MHz}$ to $2700 \mathrm{MHz}, \mathrm{IF}=190 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=\mathrm{f}_{\mathrm{RF}}+\mathrm{f}_{\mathrm{IF}}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Conversion Gain	$\begin{aligned} & \hline \mathrm{RF}=2300 \mathrm{MHz} \\ & \mathrm{RF}=2500 \mathrm{MHz} \\ & \mathrm{RF}=2700 \mathrm{MHz} \end{aligned}$	7.0	$\begin{aligned} & 8.9 \\ & 8.4 \\ & 8.2 \end{aligned}$		dB
Conversion Gain Flatness	$\mathrm{RF}=2500 \pm 30 \mathrm{MHz}, \mathrm{LO}=2690 \mathrm{MHz}$, IF= $190 \pm 30 \mathrm{MHz}$		± 0.1		dB
Conversion Gain vs Temperature	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{RF}=2500 \mathrm{MHz}$		-0.007		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Input 3 ${ }^{\text {rd }}$ Order Intercept	$\begin{aligned} & \mathrm{RF}=2300 \mathrm{MHz} \\ & \mathrm{RF}=2500 \mathrm{MHz} \\ & \mathrm{RF}=2700 \mathrm{MHz} \end{aligned}$	22.5	$\begin{aligned} & 23.8 \\ & 24.5 \\ & 24.4 \end{aligned}$		dBm
SSB Noise Figure	$\begin{aligned} & \mathrm{RF}=2300 \mathrm{MHz} \\ & \mathrm{RF}=2500 \mathrm{MHz} \\ & \mathrm{RF}=2700 \mathrm{MHz} \end{aligned}$		$\begin{gathered} \hline 9.9 \\ 10.2 \\ 10.4 \end{gathered}$	11.9	dB
SSB Noise Figure Under Blocking	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=2500 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=2690 \mathrm{MHz}, \\ & \mathrm{f}_{\mathrm{BLOCK}}=2300 \mathrm{MHz}, \mathrm{P}_{\mathrm{BLOCK}}=5 \mathrm{dBm} \end{aligned}$		17.5		dB
2LO - 2RF Output Spurious Product $\left(f_{R F}=f_{L O}-f_{I F} / 2\right)$	$\mathrm{f}_{\mathrm{RF}}=2595 \mathrm{MHz}$ at $-10 \mathrm{dBm}, \mathrm{f}_{\mathrm{L} O}=2690 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=190 \mathrm{MHz}$		-61		dBc
3LO - 3RF Output Spurious Product $\left(f_{\mathrm{RF}}=f_{\mathrm{LO}}-f_{\mathrm{IF}} / 3\right)$	$\mathrm{f}_{\mathrm{RF}}=2626.67 \mathrm{MHz}$ at $-10 \mathrm{dBm}, \mathrm{f}_{\mathrm{L} O}=2690 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=190 \mathrm{MHz}$		-74		dBc
Input 1dB Compression	$\begin{aligned} & \mathrm{RF}=2500 \mathrm{MHz}, V_{\text {CCIF }}=3.3 \mathrm{~V} \\ & \mathrm{RF}=2500 \mathrm{MHz}, \mathrm{~V}_{\text {CCIF }}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 10.9 \\ & 13.9 \end{aligned}$		dBm

Low-Side LO Downmixer Application: $\mathrm{RF}=2400 \mathrm{MHz}$ to 3800 MHz , $\mathrm{IF}=190 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=\mathrm{f}_{\mathrm{RF}}-\mathrm{f}_{\mathrm{IF}}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Conversion Gain	$\begin{aligned} & \mathrm{RF}=2600 \mathrm{MHz} \\ & \mathrm{RF}=3300 \mathrm{MHz} \\ & \mathrm{RF}=3500 \mathrm{MHz} \end{aligned}$	5.3	$\begin{aligned} & 8.9 \\ & 7.1 \\ & 6.7 \end{aligned}$		dB
Conversion Gain Flatness	$\mathrm{RF}=3500 \mathrm{MHz} \pm 30 \mathrm{MHz}, \mathrm{LO}=3310 \mathrm{MHz}, \mathrm{IF}=190 \pm 30 \mathrm{MHz}$		± 0.15		dB
Conversion Gain vs Temperature	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{RF}=3500 \mathrm{MHz}$		-0.004		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Input 3rd Order Intercept	$\begin{aligned} & \mathrm{RF}=2600 \mathrm{MHz} \\ & \mathrm{RF}=3300 \mathrm{MHz} \\ & \mathrm{RF}=3500 \mathrm{MHz} \end{aligned}$	22.5	$\begin{aligned} & 24.7 \\ & 25.6 \\ & 25.1 \end{aligned}$		dBm
SSB Noise Figure	$\begin{aligned} & \mathrm{RF}=2600 \mathrm{MHz} \\ & \mathrm{RF}=3300 \mathrm{MHz} \\ & \mathrm{RF}=3500 \mathrm{MHz} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 9.6 \\ 11.6 \\ 11.8 \\ \hline \end{gathered}$		dB
2RF - 2LO Output Spurious Product $\left(\mathrm{f}_{\mathrm{RF}}=\mathrm{f}_{\mathrm{LO}}+\mathrm{f}_{\mathrm{IF} / 2}\right)$	$\begin{aligned} & \begin{array}{l} \mathrm{f}_{\mathrm{RF}}=3405 \mathrm{MHz} \text { at }-10 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}=3310 \mathrm{MHz} \\ \mathrm{f}_{\mathrm{IF}}=190 \mathrm{MHz} \end{array} \end{aligned}$		-50		dBc
3RF - 3LO Output Spurious Product $\left(\mathrm{f}_{\mathrm{RF}}=\mathrm{f}_{\mathrm{LO}}+\mathrm{f}_{\mathrm{FF} / 3}\right)$	$\begin{aligned} & \begin{array}{l} \mathrm{fF} \\ \\ \mathrm{f}_{\mathrm{IF}}=33373.33 \mathrm{MHz} \text { at }-10 \mathrm{dBm}, \mathrm{f}_{\mathrm{L} O}=3310 \mathrm{MHz} \end{array} \\ & \hline \end{aligned}$		-77		dBC
Input 1dB Compression	$\begin{aligned} & \mathrm{RF}=3500 \mathrm{MHz}, \mathrm{~V}_{\text {CCIF }}=3.3 \mathrm{~V} \\ & \mathrm{RF}=3500 \mathrm{MHz}, \mathrm{~V}_{\text {CCIF }}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 11.3 \\ & 11.8 \end{aligned}$		dBm

DC ELECTRICAL CHARACTERISTICS $V_{c C}=3.3 v, V_{C C I I F}=3.3 v, S H D N=L o w, T_{A}=25^{\circ}$, unless otherwise
noted. Test circuit shown in Figure 1. (Note 2)

| PARAMETER | CONDITIONS | MIN | TYP | | MAX |
| :--- | :--- | :--- | :--- | :---: | :---: | UNITS

Shutdown Logic Input (SHDN) Low = On, High = Off

SHDN Input High Voltage (Off)		3	V
SHDN Input Low Voltage (On)		0.3	V
SHDN Input Current	-0.3 V to $\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$	-20	30
Turn On Time		$\mu \mathrm{A}$	
Turn Off Time		1	$\mu \mathrm{~s}$

LO Select Logic Input (LOSEL) Low = L01 Selected, High = L02 Selected

LOSEL Input High Voltage		3		V
LOSEL Input Low Voltage			0.3	V
LOSEL Input Current	-0.3 V to $\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$	-20	30	$\mu \mathrm{~A}$
LO Switching Time		50	ns	

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTC5543 is guaranteed functional over the operating temperature range from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Note 3: SSB Noise Figure measurements performed with a small-signal noise source, bandpass filter and 6 dB matching pad on RF input, bandpass filter and 6 dB matching pad on the LO input, and no other RF signals applied.
Note 4: LO switch isolation is measured at the IF output port at the IF frequency with f_{LO} and $\mathrm{f}_{\mathrm{L} 02}$ offset by 2 MHz .

TYPICAL DC PGRFORMANCE CHARACTERISTICS shon $=$ Low, Test tiruxit shown in Figure 1.

TYPICAL AC PERFORMANCE CHARACTERISTICS High-Side Lo

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCIF}}=3.3 \mathrm{~V}, \mathrm{SHDN}=\mathrm{Low}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{L} 0}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{PF}}=-3 \mathrm{dBm}(-3 \mathrm{dBm} /$ tone for two-tone IIP3 tests, $\Delta \mathrm{f}=2 \mathrm{MHz})$, $\mathrm{IF}=190 \mathrm{MHz}$, unless otherwise noted. Test circuit shown in Figure 1.

5543605
2500MHz Conversion Gain, IIP3 and NF vs LO Power

5543 G08
Conversion Gain, IIP3 and NF vs IF Supply Voltage (Dual Supply)

5543 G11

RF Isolation vs RF Frequency

2300MHz Conversion Gain, IIP3
and NF vs LO Power

5543 G07
Conversion Gain, IIP3 and NF vs Supply Voltage (Single Supply)

Conversion Gain, IIP3 and RF Input P1dB vs Temperature

TYPICAL AC PGRFORMANCE CHARACTERISTICS High-side Lo (continued)
$V_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {CCIF }}=3.3 \mathrm{~V}, \mathrm{SHDN}=\mathrm{Low}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=-3 \mathrm{dBm}(-3 \mathrm{dBm} /$ tone for two-tone IIP3 tests, $\Delta \mathrm{f}=2 \mathrm{MHz})$, IF $=190 \mathrm{MHz}$, unless otherwise noted. Test circuit shown in Figure 1.

TYPICAL AC PERFORMANCE CHARACTERISTICS Low.Side Lo

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCIF}}=3.3 \mathrm{~V}, \mathrm{SHDN}=\mathrm{Low}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{L} 0}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{PF}}=-3 \mathrm{dBm}(-3 \mathrm{dBm} /$ tone for two-tone IIP3 tests, $\Delta \mathrm{f}=2 \mathrm{MHz})$, $\mathrm{IF}=190 \mathrm{MHz}$, unless otherwise noted. Test circuit shown in Figure 1.

PIn fUnCTIOnS

NC (Pin 1): This pin is not connected internally. It can be left floating, connected to ground or to $\mathrm{V}_{\text {CC }}$.
RF (Pin 2): Single-Ended Input for the RF Signal. This pin is internally connected to the primary side of the RF input transformer, which has low DC resistance to ground. A series DC-blocking capacitor should be used to avoid damage to the integrated transformer. The RF input is impedance matched, as long as the selected LO input is driven with a $0 \mathrm{dBm} \pm 6 \mathrm{~dB}$ source between 2.4 GHz and 3.6 GHz .

CT (Pin 3): RF Transformer Secondary Center-Tap. This pin may require a bypass capacitor to ground. See the Applications Information section. This pin has an internally generated bias voltage of 1.2 V . It must be DC-isolated from ground and $V_{C C}$.
GND (Pins 4, 10, 12, 13, 17, Exposed Pad Pin 21): Ground. These pins must be soldered to the RF ground plane on the circuit board. The exposed pad metal of the package provides both electrical contact to ground and good thermal contact to the printed circuit board.

SHDN (Pin 5): Shutdown Pin. When the input voltage is less than 0.3 V , the internal circuits supplied through pins $6,8,14,18$ and 19 are enabled. When the input voltage is greater than 3 V , all circuits are disabled. Typical input current is less than $10 \mu \mathrm{~A}$. This pin must not be allowed to float.
$\mathbf{V}_{\text {CC2 }}$ (Pin 6) and $V_{\text {CC1 }}$ (Pin 8): Power Supply Pins for the LO Buffer and Bias Circuits. These pins are internally connected and must be externally connected to a regulated 3.3V supply, with bypass capacitors located close to the pin. Typical current consumption is 99 mA .

LOBIAS (Pin 7): This Pin Allows Adjustment of the LO Buffer Current. Typical DC voltage is 2.2 V .
LOSEL (Pin 9): L01/L02 SelectPin. When the inputvoltage is less than 0.3 V , the L01 port is selected. When the input voltage is greater than 3 V , the LO2 port is selected. Typical input current is $11 \mu \mathrm{~A}$ for LOSEL $=3.3 \mathrm{~V}$. This pin must not be allowed to float.

L01 (Pin 11) and L02 (Pin 15): Single-Ended Inputs for the Local Oscillators. These pins are internally biased at OV and require external DC blocking capacitors. Both inputs are internally matched to 50Ω, even when the chip is disabled (SHDN = high).

VCC3 (Pin 14): Power Supply Pin for the LO Switch. This pin must be connected to a regulated 3.3 V supply and bypassed to ground with a capacitor near the pin. Typical DC current consumption is less than $100 \mu \mathrm{~A}$.

IFGND (Pin 16): DC Ground Return for the IF Amplifier. This pin must be connected to ground to complete the IF amplifier's DC current path. Typical DC current is 102 mA .

IF- (Pin 18) and IF+ (Pin 19): Open-Collector Differential Outputs for the IF Amplifier. These pins must be connected to a DC supply through impedance matching inductors, or a transformer center-tap. Typical DC current consumption is 51 mA into each pin.

IFBIAS (Pin 20): This Pin Allows Adjustment of the IF Amplifier Current. Typical DC voltage is 2.1 V .

BLOCK DIAGRAM

TEST CIRCUIT

L1, L2 vs IF Frequencies	
IF (MHz)	L1, L2 (nH)
140	270
190	150
240	100
305	56
380	39
456	24

REF DES	VALUE	SIZE	COMMENTS
C3, C4	2.7 pF	0402	AVX
C6, C7, C8	22 pF	0402	AVX
C5, C9	$1 \mu \mathrm{~F}$	0603	AVX
C10	1000 pF	0402	AVX
C11	0.8 pF	0402	AVX
L1, L2	150 nH	0603	Coilcraft $0603 C S$
L4	1.2 nH	0402	Toko LL1005-FH
T1 (Alternate)	TC4-1W-7ALN+ (WBC4-6TLB)		Mini-Circuits (Coilcraft)

Figure 1. Standard Downmixer Test Circuit Schematic (190MHz IF)

APPLICATIONS InFORMATION

Introduction

The LTC5543 consists of a high linearity passive doublebalanced mixer core, IF buffer amplifier, high speed singlepole double-throw (SPDT) LO switch, LO buffer amplifier and bias/shutdown circuits. See Block Diagram section for a description of each pin function. The RF and LO inputs are single-ended. The IF output is differential. Low-side or high-side LO injection can be used. The evaluation circuit, shown in Figure 1, utilizes bandpass IF output matching and an IF transformer to realize a 50Ω single-ended IF output. The evaluation board layout is shown in Figure 2.

Figure 2. Evaluation Board Layout

RF Input

The mixer's RF input, shown in Figure 3, is connected to the primary winding of an integrated transformer. A 50Ω match is realized with a series inductor (L4) and a shunt capacitor (C11). The primary side of the RF transformer is DC-grounded internally and the DC resistance of the primary is approximately 3.2Ω. A DC blocking capacitor is needed if the RF source has DC voltage present.
The secondary winding of the RF transformer is internally connected to the passive mixer. The center-tap of the transformer secondary is connected to pin 3 (CT) to allow the connection of bypass capacitor, C 2 . The value of C 2 is LO frequency-dependent and is not required for most
applications. When used, C2 should be located within 2 mm of pin 3 for proper high-frequency decoupling. The nominal DC voltage on the CT pin is 1.2 V .

For the RF input to be matched, the selected LO input must be driven. A broadband input match is realized with $\mathrm{L} 4=1.2 \mathrm{nH}$ and C11 $=0.8 \mathrm{pF}$. The measured RF input return loss is shown in Figure 4 for LO frequencies of 2.6 GHz , 3.0 GHz and 3.4 GHz . These LO frequencies correspond to the lower, middle and upper values of the LO range. As shown in Figure 4, the RF input impedance is somewhat dependent on LO frequency.

Figure 3. RF Input Schematic

5543 F04
Figure 4. RF Input Return Loss

APPLICATIONS INFORMATION

The RF input impedance and input reflection coefficient, versus RF frequency, is listed in Table 1. The reference plane for this data is pin 2 of the IC, with no external matching, and the LO is driven at 2.69 GHz .

Table 1. RF Input Impedance and S11
(at Pin 2, No External Matching, LO Input Driven at 2.69GHz)

FREQUENCY (GHz)	INPUT IMPEDANCE	S11	
		ANGLE	
2.0	$44.6+\mathrm{j} 14.7$	0.16	101.3
2.2	$41.0+\mathrm{j} 11.9$	0.16	119.7
2.4	$37.7+\mathrm{j} 10.7$	0.18	132.0
2.6	$31.7+\mathrm{j} 9.4$	0.25	146.2
2.8	$26.2+\mathrm{j} 18.8$	0.38	127.8
3.0	$28.3+\mathrm{j} 22.4$	0.38	118.1
3.2	$28.2+\mathrm{j} 24.5$	0.40	114.3
3.4	$27.7+\mathrm{j} 27.8$	0.43	109.0
3.6	$28.7+\mathrm{j} 31.2$	0.46	102.7
3.8	$29.9+\mathrm{j} 32.8$	0.45	99.2
4.0	$30.4+\mathrm{j} 33.4$	0.44	97.8

Figure 5. LO Input Schematic

LO Inputs

The mixer's LO input circuit, shown in Figure 5, consists of an integrated SPDT switch, a balun transformer, and a two-stage high-speed limiting differential amplifier to drive the mixer core. The LTC5543's LO amplifiers are optimized for the 2.4 GHz to 3.6 GHz LO frequency range. LO frequencies above or below this frequency range may be used with degraded performance.

The LO switch is designed for high isolation and fast (<50ns) switching. This allows the use of two active synthesizers in frequency-hopping applications. If only one synthesizer is used, then the unused LO input may be grounded. The LO switch is powered by $\mathrm{V}_{\mathrm{CC3}}$ (Pin 14) and controlled by the LOSEL logic input (Pin 9). The L01 and LO2 inputs are always 50Ω-matched when $\mathrm{V}_{C C}$ is applied to the chip, even when the chip is shutdown. The DC resistance of the selected LO input is approximately 20Ω and the unselected input is approximately 50Ω. A logic table for the LO switch is shown in Table 2. Measured LO input return loss is shown in Figure 6.

Table 2. LO Switch Logic Table

LOSEL	ACTIVE LO INPUT
Low	L01
High	LO2

The LO amplifiers are powered by $V_{C C 1}$ and $V_{C C 2}$ (pin 8 and pin 6). When the chip is enabled (SHDN = low), the internal bias circuit provides a regulated 4mA current to the amplifier's bias input, which in turn causes the amplifiers to draw approximately 90 mA of DC current. This 4 mA reference current is also connected to LOBIAS (Pin 7) to allow modification of the amplifier's DC bias current for special applications. The recommended application circuits require no LO amplifier bias modification, so this pin should be left open-circuited.

5543 F06
Figure 6. LO Input Return Ioss

APPLICATIONS InFORMATION

The nominal LO input level is 0 dBm although the limiting amplifiers will deliver excellent performance over a $\pm 6 \mathrm{~dB}$ input power range. LO input power greater than 6dBm may cause conduction of the internal ESD diodes. Series capacitors C3 and C4 optimize the input match and provide DC blocking.
The L01 input impedance and input reflection coefficient, versus frequency, is shown in Table 3. The LO2 port is identical due to the symmetric device layout and packaging.

Table 3. L01 Input Impedance vs Frequency (at Pin 11, No External Matching, LOSEL = Low)

FREQUENCY (GHz)	INPUT IMPEDANCE	S11	
		ANGLE	
2.0	$28.9+\mathrm{j} 3.6$	0.27	167.7
2.2	$30.8+\mathrm{j} 8.7$	0.26	149.5
2.4	$33.4+\mathrm{j} 11.7$	0.24	136.8
2.6	$34.6+\mathrm{j} 13.7$	0.24	129.1
2.8	$35.3+\mathrm{j} 16.2$	0.25	121.5
3.0	$36.0+\mathrm{j} 18.8$	0.27	114.3
3.2	$37.2+\mathrm{j} 22.1$	0.28	105.9
3.4	$38.7+\mathrm{j} 24.6$	0.30	99.2
3.6	$39.4+\mathrm{j} 26.9$	0.31	94.8
3.8	$39.7+\mathrm{j} 29.1$	0.33	91.5
4.0	$39.6+\mathrm{j} 32.4$	0.36	87.9

IF Output

The IF amplifier, shown in Figure 7, has differential opencollector outputs (IF^{+}and IF^{-}), a DC ground return pin (IFGND), and a pin for modifying the internal bias (IFBIAS). The IF outputs must be biased at the supply voltage (VCIF), which is applied through matching inductors L1 and L2. Alternatively, the IF outputs can be biased through the center tap of a transformer. The common node of L1 and L2 can be connected to the center tap of the transformer. Each IF output pin draws approximately 51mA of DC supply current (102 mA total). IFGND (pin 16) must be grounded or the amplifier will not draw DC current. Grounding through inductor L3 may improve LO-IF and RF-IF leakage performance in some applications, but is otherwise not necessary. High DC resistance in L3 will reduce the IF amplifier supply current, which will degrade RF performance.

Figure 7. IF Amplifier Schematic with Transformer-Based Bandpass Match

For optimum single-ended performance, the differential IF outputs must be combined through an external IF transformer or discrete IF balun circuit. The evaluation board (see Figures 1 and 2) uses a 4:1 ratio IF transformer for impedance transformation and differential to singleended transformation. It is also possible to eliminate the IF transformer and drive differential filters or amplifiers directly.

The IF output impedance can be modeled as 320Ω in parallel with 2.4 pF at IF frequencies. An equivalent smallsignal model (including bondwire inductance) is shown in Figure 8. Frequency-dependent differential IF output impedance is listed in Table 4. This data is referenced to the package pins (with no external components) and includes the effects of IC and package parasitics.

Figure 8. IF Output Small-Signal Model

APPLICATIONS INFORMATION

Transformer-Based Bandpass IF Matching

The IF output can be matched for IF frequencies as low as 90 MHz or as high as 500 MHz using the bandpass IF matching shown in Figure 1 and Figure 7.L1 and L2 resonate with the internal IF output capacitance at the desired IF frequency. The value of $\mathrm{L} 1, \mathrm{~L} 2$ is calculated as follows:

$$
\mathrm{L} 1, \mathrm{~L} 2=1 /\left[\left(2 \pi f_{\mathrm{IF}}\right)^{2} \cdot 2 \cdot \mathrm{C}_{\mathrm{IF}}\right]
$$

where $\mathrm{C}_{\text {IF }}$ is the internal IF capacitance (listed in Table 4).
Values of L1 and L2 are tabulated in Figure 1 for various IF frequencies.

Table 4. IF Output Impedance vs Frequency

FREQUENCY (MHz)	DIFFERENTIAL OUTPUT IMPEDANCE $\left(\mathbf{R}_{\mathbf{I F}} \\| \mathbf{X}_{\text {IF }}\left(\mathbf{C}_{\mathbf{I F}}\right)\right)$
90	$348 \\|-\mathrm{j} 680(2.6 \mathrm{pF})$
140	$335 \\|-\mathrm{j} 455(2.5 \mathrm{pF})$
190	$324 \\|-\mathrm{j} 349(2.4 \mathrm{pF})$
240	$320 \\|-\mathrm{j} 276(2.4 \mathrm{pF})$
300	$315 \\|-\mathrm{j} 221(2.4 \mathrm{pF})$
380	$310 \\|-\mathrm{j} 182(2.3 \mathrm{pF})$
456	$302 \\|-\mathrm{j} 145(2.4 \mathrm{pF})$

The typical performance of the LTC5543 using transformerbased bandpass IF matching at 305MHz output frequency is shown in Figure 9. The values of L1 and L2 are 56 nH as shown in Figure 1.

5543 F09
Figure 9. Conversion Gain and IIP3 vs RF Frequency Using Transformer-Based IF Matching

Discrete IF Balun Matching

For many applications, it is possible to replace the IF Transformer with the discrete IF Balun shown in Figure 10. The values of L5, L6, C13 and C14 are calculated to realize a 180° phase shiftat the desired IFfrequency and provide 50Ω single-ended output, using the equations listed below. Inductor L7 is used to cancel the internal capacitance C_{IF} and supplies bias voltage to the IF pin. C15 is a DC blocking capacitor.

$$
\begin{aligned}
& \mathrm{L} 5, \mathrm{~L} 6=\frac{\sqrt{\mathrm{R}_{\mathrm{IF}} \cdot \mathrm{R}_{\text {OUT }}}}{\omega_{\mathrm{IF}}} \\
& \mathrm{C} 13, \mathrm{C} 14=\frac{1}{\omega_{\mathrm{IF}} \cdot \sqrt{\mathrm{R}_{\mathrm{IF}} \cdot \mathrm{R}_{\text {OUT }}}} \\
& \mathrm{L} 7=\frac{\left|\mathrm{X}_{\mathrm{IF}}\right|}{\omega_{\mathrm{IF}}}
\end{aligned}
$$

These equations give a good starting point, but it is usually necessary to adjust the component values after building and testing the circuit. The final solution can be achieved with less iteration by considering the parasitics of L7 in the above calculation.

The typical performance of the LTC5543 using a 456MHz discrete IF Balun is shown in Figure 11. The actual component values are:

$$
\mathrm{L} 5, \mathrm{~L} 6=36 \mathrm{nH}, \mathrm{~L} 7=48 \mathrm{nH} \text { and } \mathrm{C} 13, \mathrm{C} 14=3.3 \mathrm{pF}
$$

Figure 10. IF Amplifier Schematic with Discrete IF Balun

APPLICATIONS INFORMATION

5543 F11
Figure 11. Conversion Gain and Ilp3 vs RF Frequency Using a 456MHz Discrete IF Balun

Measured IF output return losses for transformer-based bandpass IF matching (190MHzand 305MHzIFfrequency) and discrete Balun IF matching (456MHz IF frequency) are plotted in Figure 12.

Figure 12. IF Output Return Loss

IF Amplifier Bias

The IF amplifier delivers excellent performance with $V_{\text {CIIF }}=3.3 \mathrm{~V}$, which allows the $\mathrm{V}_{\text {CC }}$ and $\mathrm{V}_{\text {CIIF }}$ supplies to be common. With $\mathrm{V}_{\text {CIIF }}$ increased to 5 V , the RF input P1dB increases by more than 3dB, at the expense of higher power consumption. Mixer performance at 2500 MHz is shown in Table 5 with $\mathrm{V}_{\text {CCIF }}=3.3 \mathrm{~V}$ and 5 V . For the highest conversion gain, high- Q wire-wound chip inductors are recommended for L 1 and L , especially when using $\mathrm{V}_{\text {CIIF }}=3.3 \mathrm{~V}$. Low-cost multilayer chip inductors may be substituted, with a slight degradation in performance.

Table 5. Performance Comparison with $\mathrm{V}_{\text {CCIF }}=3.3 \mathrm{~V}$ and 5 V (RF = 2500MHz, High-Side LO, IF = 190MHz)

$\mathbf{V}_{\text {CCIF }}$ (\mathbf{V})	$\mathbf{I}_{\text {CCIF }}$ $(\mathbf{m A})$	$\mathbf{G C}_{\mathbf{C}}$ $(\mathbf{d B})$	P1dB $(\mathbf{d B m})$	IIP3 $(\mathbf{d B m})$	NF $(\mathbf{d B})$
3.3	102	8.4	10.9	24.5	10.2
5	105	8.4	13.9	24.5	10.3

The IFBIAS pin (pin 20) is available for reducing the DC current consumption of the IF amplifier, at the expense of reduced performance. This pin should be left open-circuited for optimum performance. The internal bias circuit produces a 4mA reference for the IF amplifier, which causes the amplifier to draw approximately 102 mA . If resistor R1 is connected to pin 20 as shown in Figure 7, a portion of the reference current can be shunted to ground, resulting in reduced IF amplifier current. For example, $\mathrm{R} 1=1 \mathrm{k} \Omega$ will shunt away 1.5 mA from pin 20 and the IF amplifier current will be reduced by 38% to approximately 62 mA . The nominal, open-circuit DC voltage at pin 20 is 2.1 V . Table 6 lists RF performance at 2500 MHz versus IF amplifier current.

Table 6. Mixer Performance with Reduced IF Amplifier Current
$\left(\right.$ RF $=2500 \mathrm{MHz}$, High-Side LO, IF $=190 \mathrm{MHz}, \mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {ClIF }}=3.3 \mathrm{~V}$)

R1 $(\mathbf{k} \boldsymbol{\Omega})$	$\mathbf{I C C I F}^{(2)}$ $(\mathbf{m A})$	$\mathbf{G}_{\mathbf{c}}$ $(\mathbf{d B})$	IIP3 $(\mathbf{d B m})$	$\mathbf{P 1 d B}$ $(\mathbf{d B m})$	$\mathbf{N F}$ $(\mathbf{d B})$
OPEN	102	8.4	24.5	10.9	10.2
4.7	90	8.3	24.1	11	10.1
2.2	81	8.1	23.5	11	10.2
1	62	7.7	21.6	11	10.2

(RF $=3500 \mathrm{MHz}$, Low-Side LO, IF $=190 \mathrm{MHz}, \mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {CCIF }}=3.3 \mathrm{~V}$)

R1 $(\mathbf{k} \boldsymbol{\Omega})$	$\mathbf{I}_{\text {CCIF }}$ $(\mathbf{m A})$	$\mathbf{G}_{\mathbf{C}}$ $(\mathbf{d B})$	IIP3 $(\mathbf{d B m})$	$\mathbf{P 1 d B}$ $(\mathbf{d B m})$	$\mathbf{N F}$ $(\mathbf{d B})$
OPEN	100	6.7	25.1	11.3	11.8
4.7	90	6.4	24.7	11.4	11.7
2.2	82	6.1	24.2	11.5	11.8
1	64	5.3	23.2	11.4	12.1

Shutdown Interface

Figure 13 shows a simplified schematic of the SHDN pin interface. To disable the chip, the SHDN voltage must be higher than 3.0V. If the shutdown function is not required, the SHDN pin should be connected directly to GND. The voltage at the SHDN pin should never exceed the power supply voltage $\left(V_{\text {Cc }}\right)$ by more than 0.3 V . If this should occur, the supply current could be sourced through the ESD diode, potentially damaging the IC.

APPLICATIONS InFORMATION

The SHDN pin must be pulled high or low. If left floating, then the on/off state of the IC will be indeterminate. If a three-state condition can exist at the SHDN pin, then a pull-up or pull-down resistor must be used.

Supply Voltage Ramping

Fast ramping of the supply voltage can cause a current glitch in the internal ESD protection circuits. Depending on the supply inductance, this could result in a supply voltage transient that exceeds the maximum rating. A supply voltage ramp time of greater than 1 ms is recommended.

Figure 13. Shutdown Input Circuit

PACKAGE DESCRIPTION

UH Package
20-Lead Plastic QFN ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1818 Rev Ø)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

NOTE:

1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20 mm ON ANY SIDE

BOTTOM VIEW—EXPOSED PAD
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION

ON THE TOP AND BOTTOM OF PACKAGE

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
Infrastructure		
LT®5514	Ultralow Distortion, IF Amplifier/ADC Driver with Digitally Controlled Gain	850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range
LT5517	40MHz to 900MHz Quadrature Demodulator	21dBm IIP3, Integrated LO Quadrature Generator
LT5521	10MHz to 3700 MHz High Linearity Upconverting Mixer	24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended LO Port Operation
LT5522	400MHz to 2.7 GHz High Signal Level Downconverting Mixer	4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF $=12.5 \mathrm{~dB}, 50 \Omega$ Single-Ended RF and LO Ports
LT5527	400MHz to 3.7 GHz , 5V Downconverting Mixer	2.3dB Conversion Gain, 23.5dBm IIP3 and 12.5dB NF at 1900MHz, 5V/78mA Supply
LTC6400-X	300MHz Low Distortion IF Amp/ADC Driver	Fixed Gain of 8dB, 14dB, 20dB and 26dB; >36dBm OIP3 at 300MHz, Differential I/0
LTC6401-X	140MHz Low Distortion IF Amp/ADC Driver	Fixed Gain of $8 \mathrm{~dB}, 14 \mathrm{~dB}, 20 \mathrm{~dB}$ and 26dB; >40dBm OIP3 at 140MHz, Differential I/0
LTC6416	2GHz 16-Bit ADC Buffer	40.25 dBm OIP3 to 300MHz, Programmable Fast Recovery Output Clamping
LTC6412	31dB Linear Analog VGA	35 dBm OIP3 at 240 MHz , Continuous Gain Range -14dB to 17dB
LT5554	Ultralow Distort IF Digital VGA	48 dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125 dB Gain Steps
LT5557	400MHz to 3.8GHz 3.3V Downconverting Mixer	2.9 dB Conversion Gain, 24.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/82mA Supply
LT5560	Ultra-Low Power Active Mixer	10 mA Supply Current, 10dBm IIP3, 10dB NF, Usable as Up- or Down-Converter.
LT5568	700MHz to 1050MHz High Linearity Direct Quadrature Modulator	22.9 dBm 0 IP 3 at $850 \mathrm{MHz},-160.3 \mathrm{dBm} / \mathrm{Hz}$ Noise Floor, $50 \Omega, 0.5 \mathrm{~V}_{\text {DC }}$ Baseband Interface, 3-Ch CDMA2000 ACPR $=-71.4 \mathrm{dBc}$ at 850 MHz
LT5572	1.5 GHz to 2.5 GHz High Linearity Direct Quadrature Modulator	21.6dBm OIP3 at 2GHz, $-158.6 \mathrm{dBm} / \mathrm{Hz}$ Noise Floor, High-Ohmic 0.5V DC Baseband Interface, $4-\mathrm{Ch}$ W-CDMA ACPR $=-67.7 \mathrm{dBc}$ at 2.14 GHz
LT5575	700MHz to 2.7GHz Direct Conversion I/Q Demodulator	Integrated Baluns, 28 dBm IIP3, $13 \mathrm{dBm} \mathrm{P1dB}, 0.03 \mathrm{~dB}$ I/Q Amplitude Match, 0.4° Phase Match
LT5578	400MHz to 2.7GHz High Linearty Upconverting Mixer	27 dBm OIP3 at 900 MHz , 24.2dBm at 1.95GHz, Integrated RF Transformer
LT5579	1.5GHz to 3.8GHz High Linearity Upconverting Mixer	27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports
LTC5598	5MHz to 1.6GHz I/Q Modulator	27.7dBm OIP3 at 140MHz, 22.9dBm at 900MHz, -161.2dBm/Hz Noise Floor
RF Power Detectors		
LTC5505	RF Power Detectors with >40dB Dynamic Range	300 MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply
LTC5532	300MHz to 7GHz Precision RF Power Detector	Precision V ${ }_{\text {out }}$ Offset Control, Adjustable Gain and Offset
LT5534	50MHz to 3GHz Log RF Power Detector with 60dB Dynamic Range	$\pm 1 \mathrm{~dB}$ Output Variation over Temperature, 38ns Response Time, Log Linear Response
LTC5536	Precision 600MHz to 7GHz RF Power Detector with Fast Comparator Output	25ns Response Time, Comparator Reference Input, Latch Enable Input, -26 dBm to +12 dBm Input Range
LT5537	Wide Dynamic Range Log RF/IF Detector	Low Frequency to 1GHz, 83dB Log Linear Dynamic Range
LT5570	2.7GHz Mean-Squared Detector	$\pm 0.5 \mathrm{~dB}$ Accuracy Over Temperature and $>50 \mathrm{~dB}$ Dynamic Range, Fast 500 ns Rise Time
LT5581	6GHz Low Power RMS Detector	40 dB Dynamic Range, $\pm 1 \mathrm{~dB}$ Accuracy Over Temperature, 1.5mA Supply Current
ADCs		
LTC2208	16-Bit, 130Msps ADC	78dBFS Noise Floor, >83dB SFDR at 250MHz
LTC2262-14	14-Bit, 150Msps ADC Ultralow Power at 1.8V Supply	72.8dB SNR, 88dB SFDR, 149mW Power Consumption
LTC2242-12	12-Bit, 250Msps ADC	65.4dB SNR, 78dB SFDR, 740mW Power Consumption

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:
105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»
Телефон: +7 495 668-12-70 (многоканальный)
Факс: +7 495 668-12-70 (доб.304)
E-mail: info@moschip.ru
Skype отдела продаж:
moschip.ru
moschip.ru_6
moschip.ru_4
moschip.ru_9

