

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

November 2014

NC7SZ11 TinyLogic[®] UHS Three-Input AND Gate

Features

- Ultra-High Speed: t_{PD} 2.7 ns (Typical) into 50 pF at 5V V_{CC}
- High Output Drive: ±24 mA at 3 V V_{CC}
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Power Down High Impedance Inputs/Outputs
- Over-Voltage Tolerance inputs facilitate 5 V to 3 V Translation
- Proprietary Noise/EMI Reduction Circuitry
- Ultra-Small MicroPak™ Packages
- Space-Saving SC70 Package

Description

The NC7SZ11 is a single three-input AND Gate from Fairchild's Ultra-High Speed Series of TinyLogic $^{\!\!\circ}$. The device is fabricated with advanced CMOS technology to achieve ultra-high speed with high output drive while maintaining low static power dissipation over a broad $V_{\rm CC}$ operating range. The device is specified to operate over the 1.65 V to 5.5 V $V_{\rm CC}$ operating range. The inputs and output are high impedance when $V_{\rm CC}$ is 0 V. Inputs tolerate voltages up to 7 V, independent of $V_{\rm CC}$ operating voltage.

Ordering Information

Part Number	Top Mark	Package	Packing Method
NC7SZ11P6X	Z11	6-Lead SC70, EIAJ SC-88a, 1.25 mm Wide	3000 Units on Tape & Reel
NC7SZ11L6X	E7	6-Lead MicroPak™, 1.00 mm Wide	5000 Units on Tape & Reel

Connection Diagrams

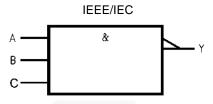
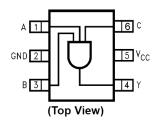
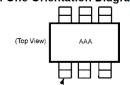




Figure 1. Logic Symbol

Pin Configurations

Pin One Orientation Diagram

Pin One

AAA represents Product Code Top Mark - see ordering code.

Note: Orientation of Top Mark determines Pin One location. Read the Top Product Code Mark left to right, Pin One is the lower left pin (see diagram)

Figure 2. SC70 (Top View)

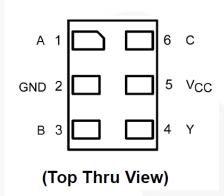


Figure 3. MicroPak (Top Through View)

Pin Definitions

Pin # SC70	Pin # MicroPak	Name	Description
1	1	A	Input
2	2	GND	Ground
3	3	В	Input
4	4	Υ	Output
5	5	Vcc	Supply Voltage
6	6	С	Input

Function Table

Y=ABC

	Inputs		Output
Α	В	С	Y
X	Х	L	L
X	L	X	L
L	X	Х	L
Н	Н	Н	Н

H = HIGH Logic Level

L = LOW Logic Level

X = Either LOW or HIGH Logic Level

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Par	Min.	Max.	Unit	
V _{CC}	Supply Voltage		-0.5	7.0	V
V _{IN}	DC Input Voltage		-0.5	7.0	V
V _{OUT}	DC Output Voltage		-0.5	7.0	V
I _{IK}	DC Input Diode Current	V _{IN} < -0.5 V		-50	mA
1	DC Output Diada Current	V _{OUT} < -0.5 V		-50	A
I _{OK}	OC Output Diode Current	V _{OUT} > 6 V, V _{CC} =GND		+20	mA mA
l _{out}	DC Output Current			±50	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current			±50	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Junction Temperature Under E	Bias		+150	°C
TL	Junction Lead Temperature (S	oldering, 10 Seconds)		+260	°C
Б	Davier Dissipation at 1959C	SC70-6		150	\/
P _D	Power Dissipation at +85°C	MicroPak-6		130	mW
FCD	Human Body Model, JESD22-		4000	\/	
Charged Device Model, JESD		22-C101	N N	2000	V

Recommended Operating Conditions

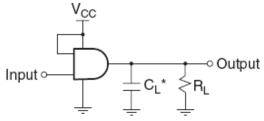
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Conditions	Min.	Max.	Unit	
V	Supply Voltage Operating		1.65	5.50	V	
V_{CC}	Supply Voltage Data Retention		1.50	5.50	7 v	
V _{IN}	Input Voltage		0	5.5	V	
V _{OUT}	Output Voltage		0	Vcc	V	
T _A	Operating Temperature		-40	+85	°C	
-		V _{CC} at 1.8 V, 2.5 V ± 0.2 V	0	20		
t _r , t _f	Input Rise and Fall Times	V_{CC} at 3.3 V \pm 0.3 V	0	10	ns/V	
		V_{CC} at 5.0 V ± 0.5 V	0	5		
0	Thermal Resistance	SC70-6		425	°C/W	
$\theta_{\sf JA}$	Thermal Resistance	MicroPak-6		500	C/VV	

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics


0	D	v	0	Т	_A =25°	С	T _A =-40 t	o +85°C	Unit	
Symbol	Parameter	V _{CC} Conditions		Min.	Тур.	Max.	Min.	Max.	Unit	
	HIGH Level Input	1.8 ± 0.15		0.75 V _{CC}			0.75 V _{CC}			
V_{IH}	Voltage	2.30 to 5.50		0.70 V _{CC}			0.70 V _{CC}		V	
W	LOW Level Input	1.8 ± 0.15				0.25 V _{CC}		0.25 V _{CC}	V	
V_{IL}	Voltage	2.30 to 5.50				0.30 V _{CC}		0.30 V _{CC}	V	
		1.65		1.55	1.65		1.55			
		2.30)	2.20	2.30		2.20			
		3.00	V _{IN} =V _{IH} , I _{OH} =-100 μA	2.90	3.00		2.90			
		4.50		4.40	4.50		4.40			
V_{OH}	HIGH Level Output Voltage	1.65	I _{OH} =-4 mA	1.29	1.52	_	1.29		V	
	Output Voltage	2.30	I _{OH} =-8 mA	1.90	2.15		1.90			
		3.00	I _{OH} =-16 mA	2.50	2.80	1, 1/1	2.40			
		3.00	I _{OH} =-24 mA	2.40	2.68		2.30			
		4.50	I _{OH} =-32 mA	3.90	4.20		3.80			
		1.65			0.00	0.10		0.10		
	/	2.30	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		0.00	0.10		0.10		
		3.00	$V_{IN}=V_{IL}$, $I_{OL}=100 \mu A$		0.00	0.10		0.10		
		4.50			0.00	0.10		0.10		
V_{OL}	LOW Level Output Voltage	1.65	I _{OL} =4 mA		0.80	0.24	Y	0.24	V	
	Cutput Voltage	2.30	I _{OL} =8 mA		0.10	0.30		0.30		
		3.00	I _{OL} =16 mA		0.15	0.40		0.40		
		3.00	I _{OL} =24 mA		0.22	0.55		0.55		
		4.50	I _{OL} =32 mA		0.22	0.55		0.55		
I _{IN}	Input Leakage Current	0 to 5.5	V _{IN} =5.5 V, GND			±1		±10	μΑ	
l _{OFF}	Power Off Leakage Current	0	V _{IN} or V _{OUT} =5.5 V			1		10	μΑ	
I _{CC}	Quiescent Supply Current	1.65 to 5.50	V _{IN} =5.5 V, GND			2	/	20	μΑ	

AC Electrical Characteristics

Symbol Paramete	Parameter	V _{cc}	Conditions	T _A =25°C			T _A =-40 to +85°C		Unit	Eiguro
	Parameter		Conditions	Min.	Тур.	Max.	Min.	Max.	Onit	Figure
		1.80 ± 0.15	C_L =15 pF, R_L =1M Ω	2.0	9.0	18.5	2.0	19.0		
	t _{PLH} , t _{PHL} Propagation Delay	2.50 ± 0.20		0.8	4.9	10.5	0.8	11.0		
		3.30 ± 0.30		0.5	3.5	8.5	0.5	9.0	20	Figure 4
IPLH, IPHL		5.00 ± 0.50		0.5	2.5	6.5	0.5	7.0	ns -	Figure 5
		3.30 ± 0.30		1.5	4.1	8.5	1.5	9.0		
		5.00 ± 0.50	R _L =500 Ω	0.8	2.9	7.5	0.8	8.0		
C _{IN}	Input Capacitance	0.00			4				pF	
C _{PD} Power Dissipation Capacitance ⁽²⁾	3.30		_	20					Fig C	
	5.00			25				pF	Figure 6	

Note:

2. C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output lading and operating at 50% duty cycle. C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD}=(C_{PD})(V_{CC})(f_{IN})+(I_{CC}static).

Notes:

- 3. C_L includes load and stray capacitance.
- 4. Input PRR=1.0 MHz; t_W500 ns.

Figure 4. AC Test Circuit

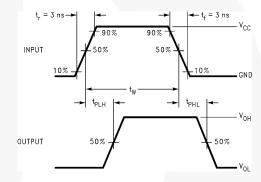
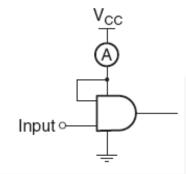
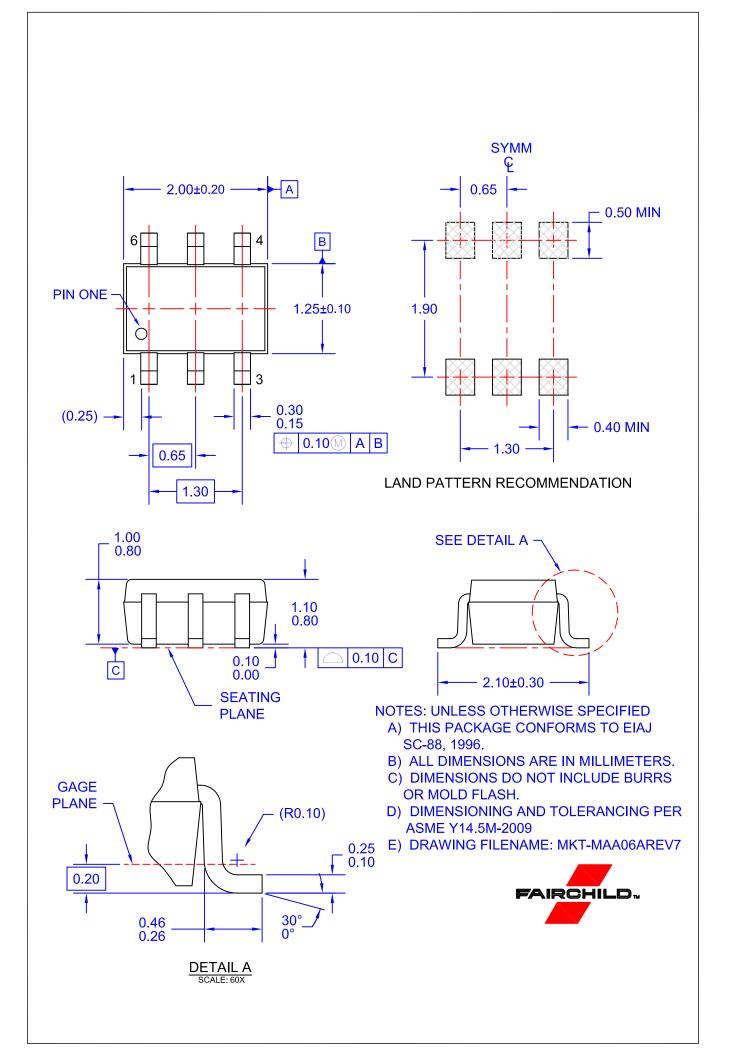
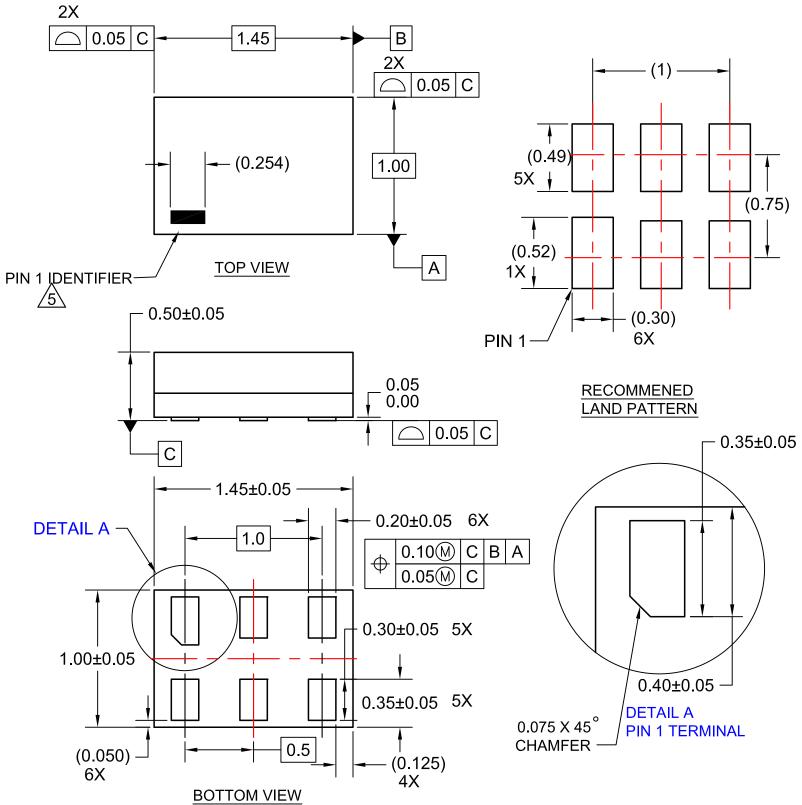



Figure 5. AC Waveforms

Note:


5. Input=AC Waveform; t_r=t_f=1.8 ns; PRR=10 MHz; Duty Cycle=50%.


Figure 6. I_{CCD} Test Circuit

Tape and Reel Specifications

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
P6X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status	
	Leader (Start End)	125 (Typical)	Empty	Sealed	
L6X	Carrier	5000	Filled	Sealed	
	Trailer (Hub End)	75 (Typical)	Empty	Sealed	

NOTES:

- 1. CONFORMS TO JEDEC STANDARD MO-252 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-2009
- 4. LANDPATTERN RECOMMENDATION PER FSC

5. PIN ONE IDENTIFIER IS 2X LENGTH OF ANY OTHER LINE IN THE MARK CODE LAYOUT.

6. FILENAME AND REVISION: MAC06AREV6

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NC7SZ11L6X_F131

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9