
SCLS548 - DECEMBER 2003

- **Controlled Baseline** - One Assembly/Test Site, One Fabrication Site
- **Extended Temperature Performance of** -40°C to 125°C
- **Enhanced Diminishing Manufacturing** Sources (DMS) Support
- **Enhanced Product-Change Notification**
- **Qualification Pedigree[†]**
- Synchronous or Asynchronous Preset
- Cascadable in Synchronous or Ripple Mode
- Fanout (Over Temperature Range) - Standard Outputs ... 10 LSTTL Loads - Bus Driver Outputs ... 15 LSTTL Loads
- [†] Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

description/ordering information

- **Balanced Propagation Delay and Transition** Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- V_{CC} Voltage = 2 V to 6 V
- High Noise Immunity N_{II} or $N_{IH} = 30\%$ of $V_{CC}, V_{CC} = 5 V$

The CD74HC40103 is manufactured with high-speed silicon-gate technology and consists of an 8-stage synchronous down counter with a single output, which is active when the internal count is zero. The device contains a single 8-bit binary counter. Each device has control inputs for enabling or disabling the clock, for clearing the counter to its maximum count, and for presetting the counter either synchronously or asynchronously. All control inputs and the terminal count (TC) output are active-low logic.

In normal operation, the counter is decremented by one count on each positive transition of the clock (CP) output. Counting is inhibited when the terminal enable (TE) input is high. TC goes low when the count reaches zero, if $\overline{\mathsf{TE}}$ is low, and remains low for one full clock period.

When the synchronous preset enable (PE) input is low, data at the P0–P7 inputs are clocked into the counter on the next positive clock transition, regardless of the state of $\overline{\mathsf{TE}}$. When the asynchronous preset enable ($\overline{\mathsf{PL}}$) input is low, data at the P0–P7 inputs asynchronously are forced into the counter, regardless of the state of the PE, TE, or CP inputs. Inputs P0-P7 represent a single 8-bit binary word for the CD74HC40103. When the master reset (MR) input is low, the counter asynchronously is cleared to its maximum count of 25510, regardless of the state of any other input. The precedence relationship between control inputs is indicated in the truth table.

	•				
T _A PACKAGE [‡]		AGE [‡]	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
$-40^{\circ}C$ to $125^{\circ}C$	SOIC – M	Tape and reel	CD74HC40103QM96EP	HC40103QEP	

ORDERING INFORMATION

[‡]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2003, Texas Instruments Incorporated

SCLS548 - DECEMBER 2003

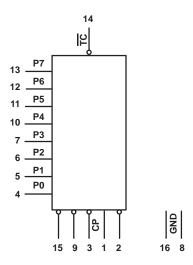
description/ordering information (continued)

If all control inputs except TE are high at the time of zero count, the counters jump to the maximum count, giving a counting sequence of 100₁₆ or 256₁₀ clock pulses long.

The CD74HC40103 may be cascaded using the TE input and the TC output in either synchronous or ripple mode. These circuits have the low power consumption usually associated with CMOS circuitry, yet have speeds comparable to low-power Schottky TTL circuits and can drive up to ten LSTTL loads.

FUNCTION TABLE[†]

	CONTRO	L INPUTS			
MR	PL	PE	TE	PRESET MODE	ACTION
Н	Н	Н	Н		Inhibit counter
Н	Н	Н	L	Synchronous	Count down
Н	Н	L	Х		Preset on next positive clock transition
Н	L	Х	Х	Anunchronous	Preset asynchronously
L	Х	Х	Х	Asynchronous	Clear to maximum count


[†] See Figure 2 for timing diagram.

NOTE: H = high voltage level, L = low voltage level, X = don't care

Clock connected to clock input

Synchronous operation: changes occur on negative-to-positive clock transitions. Load inputs: MSB = P7, LSB = P0

logic diagram (positive logic)

SCLS548 - DECEMBER 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} (see Note 1) Input clamp current, I _{IK} (V _I < -0.5 V or V _I > V _{CC} + 0.5 V) Output clamp current, I _{OK} (V _O < -0.5 V or V _O > V _{CC} + 0.5 V) Source or sink current per output pin, I _O (V _O > -0.5 V or V _O < V _{CC} + 0.5 V) Continuous current through V _O = or CND	±20 mA ±20 mA ±25 mA
Continuous current through V_{CC} or GND Package thermal impedance, θ_{JA} (see Note 2)	
Maximum junction temperature, T _J Lead temperature (during soldering):	150°C
At distance 1/16 \pm 1/32 inch (1,59 \pm 0,79 mm) from case for 10 s max Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages referenced to GND unless otherwise specified.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT	
VCC	Supply voltage		2	6	V	
		$V_{CC} = 2 V$	1.5			
VIH	High-level input voltage	V _{CC} = 4.5 V	3.15		V	
		V _{CC} = 6 V	4.2			
		V _{CC} = 2 V		0.5		
VIL	Low-level input voltage	$V_{CC} = 4.5 V$		1.35	V	
		V _{CC} = 6 V		1.8		
VI	Input voltage		0	VCC	V	
VO	Output voltage		0	VCC	V	
		$V_{CC} = 2 V$	0	1000		
t _t	Input transition (rise and fall) time	V _{CC} = 4.5 V	0	500	ns	
		V _{CC} = 6 V	0	400		
TA	Operating free-air temperature	·	-40	125	°C	

NOTES: 3. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

CD74HC40103-EP **HIGH-SPEED CMOS LOGIC** 8-STAGE SYNCHRONOUS DOWN COUNTER SCLS548 - DECEMBER 2003

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS				T _A = 2	25°C			
PARAMETER	TEST CONDIT	IONS	(mA)	VCC	MIN	MAX	MIN	MAX	UNIT
			-0.02	2 V	1.9		1.9		
		CMOS loads	-0.02	4.5 V	4.4		4.4		
V _{OH} V _I =	$V_I = V_{IH} \text{ or } V_{IL}$		-0.02	6 V	5.9		5.9		V
		TTL loads	-4	4.5 V	3.98		3.7		
			-5.2	6 V	5.48		5.2		
		CMOS loads	0.02	2 V		0.1		0.1	V
			0.02	4.5 V		0.1		0.1	
VOL	VI = VIH or VIL		0.02	6 V		0.1		0.1	
		TTI Isada	4	4.5 V		0.26		0.4	
		TTL loads		6 V		0.26		0.4	1
lj	$V_I = V_{CC}$ or GND			6 V		±0.1		±1	μΑ
ICC	$V_I = V_{CC}$ or GND		0	6 V		8		160	μA
C _{IN}	C _L = 50 pF					10		10	pF

CD74HC40103-EP **HIGH-SPEED CMOS LOGIC** 8-STAGE SYNCHRONOUS DOWN COUNTER SCLS548 – DECEMBER 2003

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

				T _A = 2	25°C			
		PARAMETER	Vcc	MIN	MAX	MIN	MAX	UNIT
			2 V	165		250		
		СР	4.5 V	33		50		
			6 V	28		43		
			2 V	125		190		
tw	Pulse duration	PL	4.5 V	25		38		ns
			6 V	21		32		
			2 V	125		190		
		MR	4.5 V	25		38		
			6 V	21		32		
			2 V	3		2		
fmax	CP frequency (see No	ote 4)	4.5 V	15		10		MHz
			6 V	18		12		
			2 V	100		150		
		P to CP	4.5 V	20		30		
			6 V	17		26		
			2 V	75		110		
		PE to CP	4.5 V	15		22		
			6 V	13		19		
t _{su}	Setup time		2 V	150		225		ns
		TE to CP		30		45		
			6 V	26		38		
			2 V	50		75		
		To CP, MR inactive	4.5 V	10		15		
			6 V	9		13		
			2 V	5		5		
		P to CP	4.5 V	5		5		
			6 V	5		5		
			2 V	0		0		
th	Hold time	TE to CP	4.5 V	0		0		ns
			6 V	0		0		
			2 V	2		2		
		PE to CP	4.5 V	2		2		
			6 V	2		2		

NOTE 4: Noncascaded operation only. With cascaded counters, clock-to-terminal count propagation delays, count enables (PE or TE) to clock setup times, and count enables (PE or TE) to clock hold times determine maximum clock frequency. For example, with these HC devices: . .

$$CP f_{max} = \frac{1}{CP \text{ to } \overline{TC} \text{ prop delay} + \overline{TE} \text{ to } CP \text{ setup time} + \overline{TE} \text{ to } CP \text{ hold time}} = \frac{1}{60 + 30 + 0} \approx 11 \text{ MHz}$$

SCLS548 - DECEMBER 2003

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

DADAMETER	FROM	то	LOAD	N	T,	₄ = 25°C	;		UNIT		
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	vcc	MIN	TYP	MAX	MIN MAX	UNIT		
		_		2 V			300	450			
		TC (asynchronous	CL = 50 pF	4.5 V			60	90			
			preset)			6 V			51	77	
	СР	. ,	C _L = 15 pF	5 V		25					
	CP	_		2 V			300	450			
		TC (synchronous	C _L = 50 pF	4.5 V			60	90			
		preset)		6 V			51	77			
		, ,	CL = 15 pF	5 V		25					
			C _L = 50 pF	2 V			200	300	ns		
^t pd	TE	TC		4.5 V			40	60			
	IE			6 V			34	51			
			C _L = 15 pF	5 V		17					
		TC		2 V			275	415	-		
	PL		C _L = 50 pF	4.5 V			55	83			
	PL	TC IC		6 V			47	71			
			CL = 15 pF	5 V		23					
				2 V			275	415			
	MR	TC	C _L = 50 pF	4.5 V			55	83			
	MR	IC IC		6 V			47	71			
			CL = 15 pF	5 V		23					
				2 V			75	110			
tt			C _L = 50 pF	4.5 V			15	22	ns		
				6 V			13	19			
fmax	CP		CL = 15 pF	5 V		25			MHz		

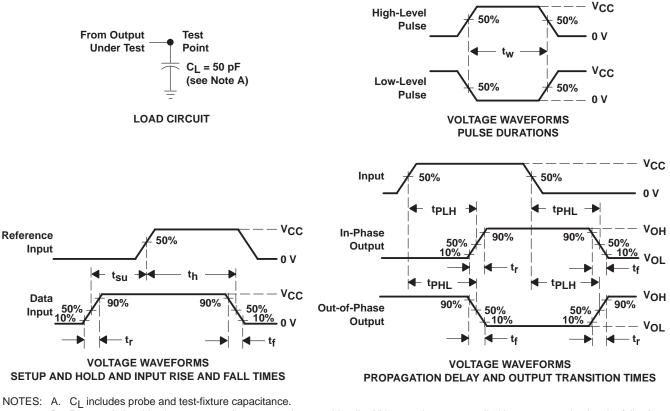
operating characteristics, V_{CC} = 5 V, T_A = 25°C, input t_r , t_f = 6 ns

PARAMETER	TYP	UNIT
C _{pd} Power dissipation capacitance (see Note 5)	25	pF
NOTE 5. Contraction data and the data mine the data mine person person and the person of the second second		

NOTE 5: C_{pd} is used to determine the dynamic power consumption per package. PD = $(C_{pd} \times V_{CC}^2 \times f_i) + (C_L \times V_{CC}^2 \times f_O)$

f_l = input frequency

 f_{O} = output frequency


 C_L = output load capacitance

 V_{CC} = supply voltage

SCLS548 - DECEMBER 2003

- B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 6 ns, t_f = 6 ns.
- C. For clock inputs, fmax is measured when the input duty cycle is 50%.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. tPLH and tPHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

CD74HC40103-EP **HIGH-SPEED CMOS LOGIC** 8-STAGE SYNCHRONOUS DOWN COUNTER SCLS548 - DECEMBER 2003

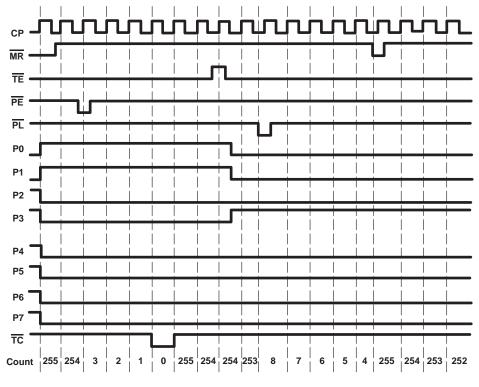


Figure 2. Timing Diagram

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins F	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CD74HC40103QM96EP	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
V62/04702-01XE	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

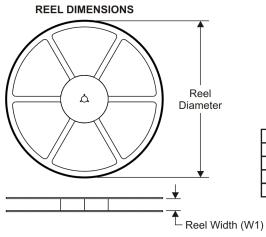
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

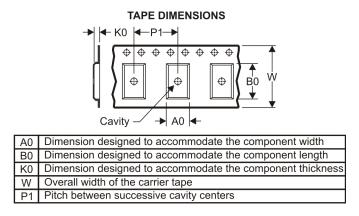
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

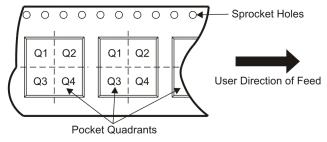
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD74HC40103-EP :


- Catalog: CD74HC40103
- Automotive: CD74HC40103-Q1
- Military: CD54HC40103

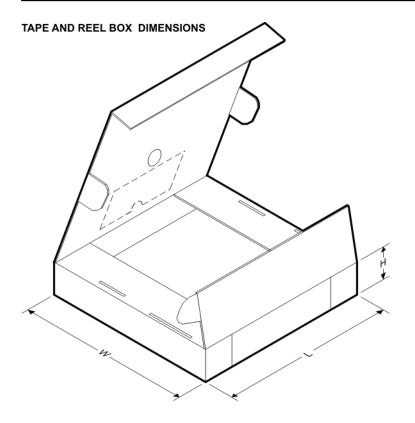

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Military QML certified for Military and Defense Applications


TEXAS INSTRUMENTS www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	9	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC40103	QM96EP	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

5-Nov-2008

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC40103QM96EP	SOIC	D	16	2500	333.2	345.9	28.6

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9