

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

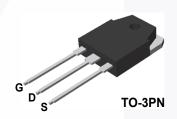
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

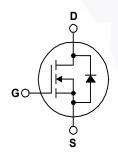
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

August 2014

FQA38N30

N-Channel QFET[®] MOSFET 300 V, 38.4 A, 85 m Ω


Features


- 38.4 A, 300 V, R_{DS(on)} = 85 m Ω (Max.) @ V_{GS} = 10 V, I_D = 19.2 A
- Low Gate Charge (Typ. 90 nC)
- Low Crss (Typ. 70 pF)
- · 100% Avalanche Tested
- RoHS compliant

Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply, power factor correction, electronic lamp ballast based on half bridge.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter		FQA38N30	Unit
V _{DSS}	Drain-Source Voltage		300	V
I _D	Drain Current - Continuous (T _C = 25°C)		38.4	Α
	- Continuous (T _C = 100°C)		24.3	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	153.6	Α
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	1500	mJ
I _{AR}	Avalanche Current	(Note 1)	38.4	Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	29	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
P _D	Power Dissipation (T _C = 25°C)		290	W
	- Derate above 25°C		2.33	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		0.43	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink	0.24		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FQA38N30	FQA38N30	TO-3PN	Tube	N/A	N/A	30 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Cha	racteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	300			V
$\Delta BV_{DSS}/$ ΔT_{J}	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.35		V/°C
I _{DSS}	Zoro Coto Voltago Drain Current	V _{DS} = 300 V, V _{GS} = 0 V			1	μА
	Zero Gate Voltage Drain Current	V _{DS} = 240 V, T _C = 125°C			10	μА
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V	-		100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V	_		-100	nA

$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 19.2 A		0.065	0.085	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 50 \text{ V}, I_{D} = 19.2 \text{ A}$		24	-	S

Dynamic Characteristics

C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,	 3380	4400	pF
C _{oss}	Output Capacitance	f = 1.0 MHz	 670	870	pF
C _{rss}	Reverse Transfer Capacitance		 70	90	pF

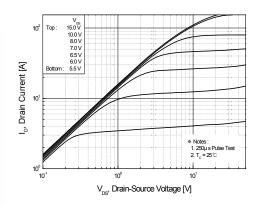
Switching Characteristics

t _{d(on)}	Turn-On Delay Time	V _{DD} = 150 V, I _D = 38.4 A,	 80	170	ns
t _r	Turn-On Rise Time	$R_G = 25 \Omega$	 430	870	ns
$t_{d(off)}$	Turn-Off Delay Time	G	 170	350	ns
t _f	Turn-Off Fall Time	(Note 4)	 190	390	ns
Q_g	Total Gate Charge	V _{DS} = 240 V, I _D = 38.4 A,	 90	120	nC
Q_{gs}	Gate-Source Charge	V _{GS} = 10 V	 23		nC
Q _{gd}	Gate-Drain Charge	(Note 4)	 44		nC

Drain-Source Diode Characteristics and Maximum Ratings

		•				
I _S	Maximum Continuous Drain-Source Diode Forward Current				38.4	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				153.6	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 38.4 A			1.5	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = 38.4 A,		300		ns
Q _{rr}	Reverse Recovery Charge	dI _F / dt = 100 A/μs		2.85		μС

Notes

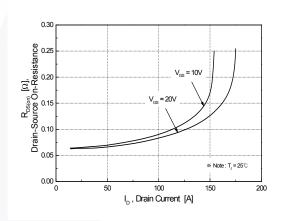

 $^{{\}bf 1.} \ {\bf Repetitive} \ {\bf rating: pulse \ width \ limited \ by \ maximum \ junction \ temperature.}$

^{2.} L = 1.7 mH, I_{AS} = 38.4 A, V_{DD} = 50 V, R_{G} = 25 Ω , starting T_{J} = 25°C.

 $^{3.~}I_{SD} \leq 38.4~A,~di/dt \leq 200~A/\mu s,~V_{DD} \leq BV_{DSS,}~starting~~T_{J} = 25^{\circ}C.$

^{4.} Essentially independent of operating temperature.

Typical Characteristics



10²

V_{SS}, Gate-Source Voltage [V]

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

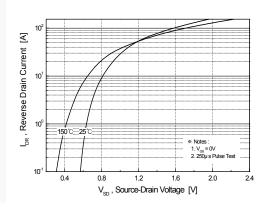
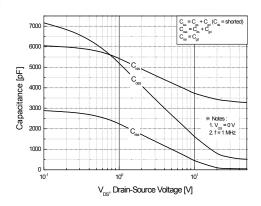



Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

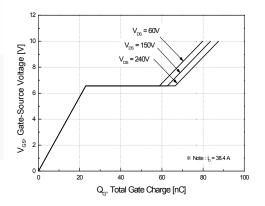


Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics

Typical Characteristics (Continued)

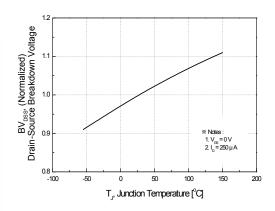
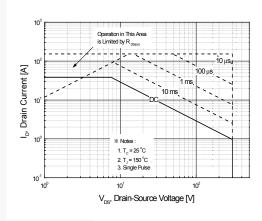



Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On-Resistance Variation vs. Temperature

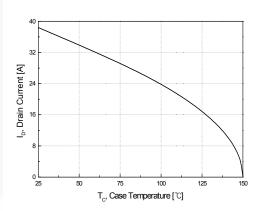


Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs. Case Temperature

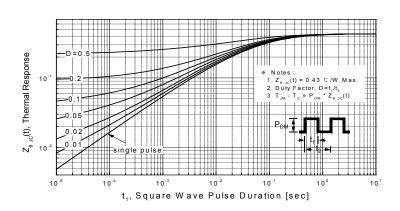


Figure 11. Transient Thermal Response Curve

Figure 12. Gate Charge Test Circuit & Waveform

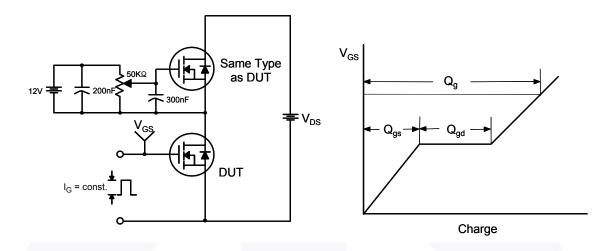


Figure 13. Resistive Switching Test Circuit & Waveforms

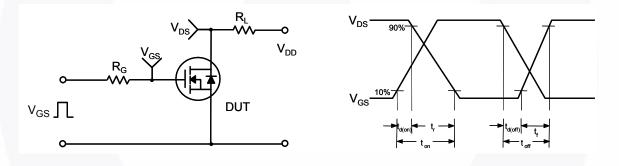
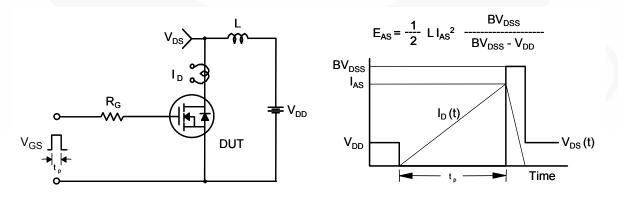



Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

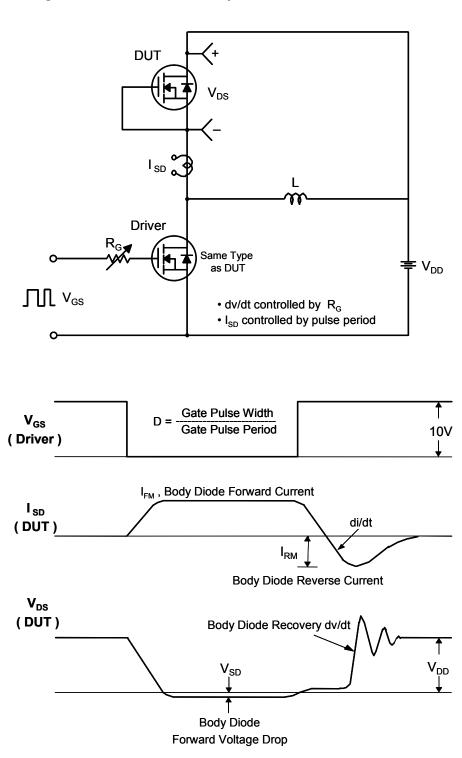
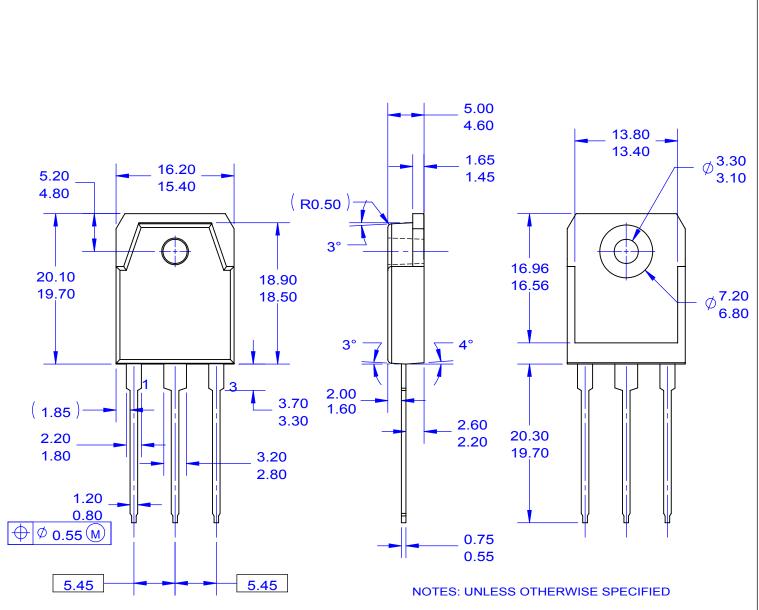
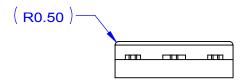




Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

- A) THIS PACKAGE CONFORMS TO EIAJ SC-65 PACKAGING STANDARD.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSION AND TOLERANCING PER ASME14.5-2009.
- D) DIMENSIONS ARE EXCLUSSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSSIONS.
- E) DRAWING FILE NAME: TO3PN03AREV2.
- F) FAIRCHILD SEMICONDUCTOR.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

FQA38N30

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9