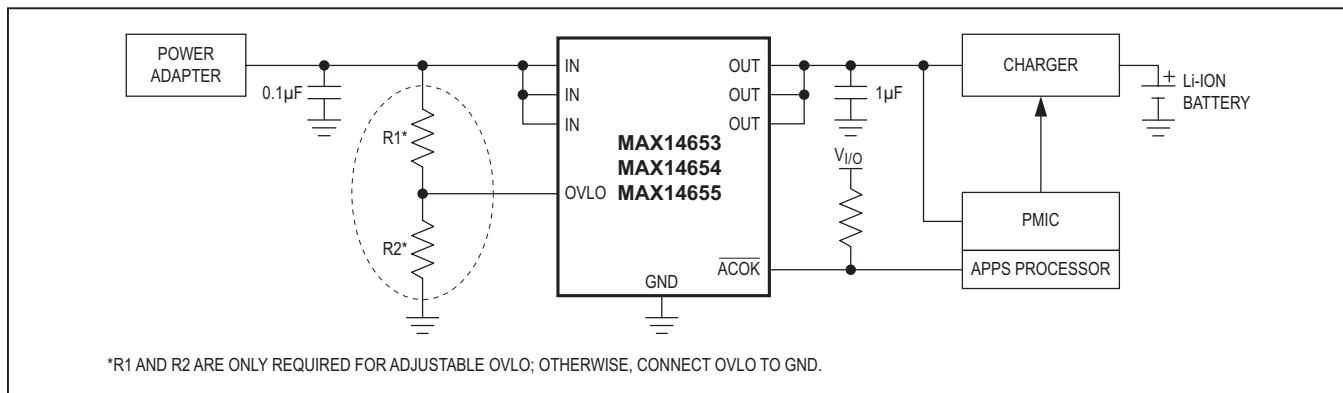


MAX14653/MAX14654/ MAX14655

High-Current Overvoltage Protectors with Adjustable OVLO

General Description

The MAX14653/MAX14654/MAX14655 overvoltage protection devices feature a low 38mΩ (typ) R_{ON} internal FET and protect low-voltage systems against voltage faults up to +28V_{DC}. An internal clamp also protects the devices from surges up to +80V. When the input voltage exceeds the overvoltage threshold, the internal FET is turned off to prevent damage to the protected downstream components.


The overvoltage protection threshold can be adjusted with optional external resistors to any voltage between 4V and 20V. With the OVLO input set below the external OVLO select voltage, the MAX14653/MAX14654/MAX14655 automatically choose the accurate internal trip thresholds. The internal overvoltage thresholds (OVLO) are preset to 15.5V typical (MAX14653), 6.8V typical (MAX14654), or 5.825V typical (MAX14655). The devices feature an open-drain ACOK output indicating a stable supply between minimum supply voltage and V_{OVLO} . The MAX14653/MAX14654/MAX14655 are also protected against overcurrent events by an internal thermal shutdown.

The MAX14653/MAX14654/MAX14655 are offered in a small 12-bump WLP package and operate over the -40°C to +85°C extended temperature range.

Applications

- Smartphones
- Tablet PCs
- Mobile Internet Devices

Typical Application Circuit

Benefits and Features

- Protect High-Power Portable Devices
 - Wide Operating Input Voltage Protection from +2.5V to +28V
 - Integrated 38mΩ (typ) n-Channel MOSFET Switch
- Flexible Overvoltage Protection Design
 - Adjustable Overvoltage-Protection Trip Level
 - Wide Adjustable OVLO Threshold Range from +4V to +20V
 - Preset Internal Accurate OVLO Thresholds:
 - 15.5V \pm 3.3% (MAX14653)
 - 6.8V \pm 2.9% (MAX14654)
 - 5.825V \pm 3% (MAX14655)
- Additional Protection Features Increase System Reliability
 - Surge Immunity to +80V
 - Soft-Start to Minimize In-Rush Current
 - Internal 15ms Startup Debounce
 - Thermal-Shutdown Protection
- Minimize PCB Area
 - 12-Bump WLP (1.29mm x 1.83mm) Package
- -40°C to +85°C Operating Temperature Range

Ordering Information/Selector Guide appears at end of data sheet.

For related parts and recommended products to use with this part, refer to www.maximintegrated.com/MAX14653.related.

Absolute Maximum Ratings

(All voltages referenced to GND.)

IN (Note 1)	-0.3V to +29V
OUT	-0.3V to V_{IN} + 0.3V
OVLO	-0.3V to +24V
ACOK	-0.3V to +6V
Continuous IN, OUT Current	4.5A

(Note: Continuous current limited by thermal design.)

Peak IN, OUT Current (10ms)	8A
Continuous Power Dissipation ($T_A = +70^\circ\text{C}$)	
WLP (derate 13.7mW/°C above +70°C)	1096mW
Operating Temperature Range	-40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	-65°C to +150°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 2)

WLP

Junction-to-Ambient Thermal Resistance (θ_{JA}) 73°C/W

Note 1: Survives burst pulse up to 80V with 2Ω series resistance.

Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

($V_{IN} = +2.5\text{V}$ to $+28\text{V}$, $C_{IN} = 0.1\mu\text{F}$, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$, unless otherwise noted. Typical values are at $V_{IN} = +5.0\text{V}$, $I_{IN} \leq 3\text{A}$, and $T_A = +25^\circ\text{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Range	V_{IN}		2.5	28		V
Input Clamp Voltage	V_{IN_CLAMP}	$I_{IN} = 10\text{mA}$, $T_A = +25^\circ\text{C}$		33		V
Input Supply Current	I_{IN}	$V_{IN} = 5\text{V}$	70	120		μA
OVLO Supply Current	I_{IN_Q}	$V_{OVLO} = 3\text{V}$, $V_{IN} = 5\text{V}$, $V_{OUT} = 0\text{V}$	63	120		μA
Internal Overvoltage Trip Level	V_{IN_OVLO}	V_{IN} rising	MAX14653	15	15.5	16
			MAX14654	6.6	6.8	7.0
			MAX14655	5.65	5.825	6.00
		V_{IN} falling	MAX14653	14.5		
			MAX14654	6.5		
			MAX14655	5.55		
OVLO Set Threshold	V_{OVLO_TH}	MAX14653	1.22	1.26	1.30	V
		MAX14654 and MAX14655	1.18	1.22	1.26	
Adjustable OVLO Threshold Range			4		20	V
External OVLO Select Threshold	V_{OVLO_SELECT}		0.2		0.3	V
Switch On-Resistance	R_{ON}	$V_{IN} = 5\text{V}$, $I_{OUT} = 1\text{A}$, $T_A = +25^\circ\text{C}$	38	53		$\text{m}\Omega$
OUT Load Capacitance	C_{OUT}	$V_{IN} = 5\text{V}$		1000		μF
OVLO Input Leakage Current	I_{OVLO}	$V_{OVLO} = V_{OVLO_TH}$	-100	100		nA

Electrical Characteristics (continued)

($V_{IN} = +2.5V$ to $+28V$, $C_{IN} = 0.1\mu F$, $T_A = -40^\circ C$ to $+85^\circ C$, unless otherwise noted. Typical values are at $V_{IN} = +5.0V$, $I_{IN} \leq 3A$, and $T_A = +25^\circ C$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
IN Leakage Voltage by OVLO	V_{IN_LEAK}	$V_{OVLO} = 20V$, V_{IN} = unconnected, $R_{OVLO} = 1M\Omega$		0.5		V
Thermal Shutdown				130		°C
Thermal-Shutdown Hysteresis				20		°C
DIGITAL SIGNALS (ACOK)						
ACOK Output Low Voltage	V_{OL}	$V_{I/O} = 3.3V$, $I_{SINK} = 1mA$, see the <i>Typical Application Circuit</i>		0.4		V
ACOK Leakage Current	V_{ACOK_LEAK}	$V_{I/O} = 3.3V$, ACOK deasserted, see the <i>Typical Application Circuit</i>	-1	+1		µA
TIMING CHARACTERISTICS (Figure 1)						
Debounce Time	t_{DEB}	Time from $2.5V < V_{IN} < V_{IN_OVLO}$ to $V_{OUT} = 10\%$ of V_{IN}		15		ms
Soft-Start Time	t_{SS}	$V_{OUT} = 10\%$ of V_{IN} to soft-start off		30		ms
Switch Turn-On Time	t_{ON}	$V_{IN} = 5V$, $R_L = 100\Omega$, $C_{LOAD} = 100\mu F$, V_{OUT} from 10%, V_{IN} to 90% V_{IN}		2		ms
Switch Turn-Off Time	t_{OFF}	$V_{IN} > V_{OVLO}$ to $V_{OUT} = 80\%$ of V_{IN} , $R_L = 100\Omega$, V_{IN} rising at $2V/\mu s$		2		µs
ESD PROTECTION						
Human Body Model		All pins		±2		kV
IEC 61000-4-2 Contact Discharge		IN pin		±8		kV
IEC 61000-4-2 Air Gap Discharge		IN pin		±15		kV

Note 3: All specifications are 100% production tested at $T_A = +25^\circ C$, unless otherwise noted. Specifications are over $-40^\circ C$ to $+85^\circ C$ and are guaranteed by design.

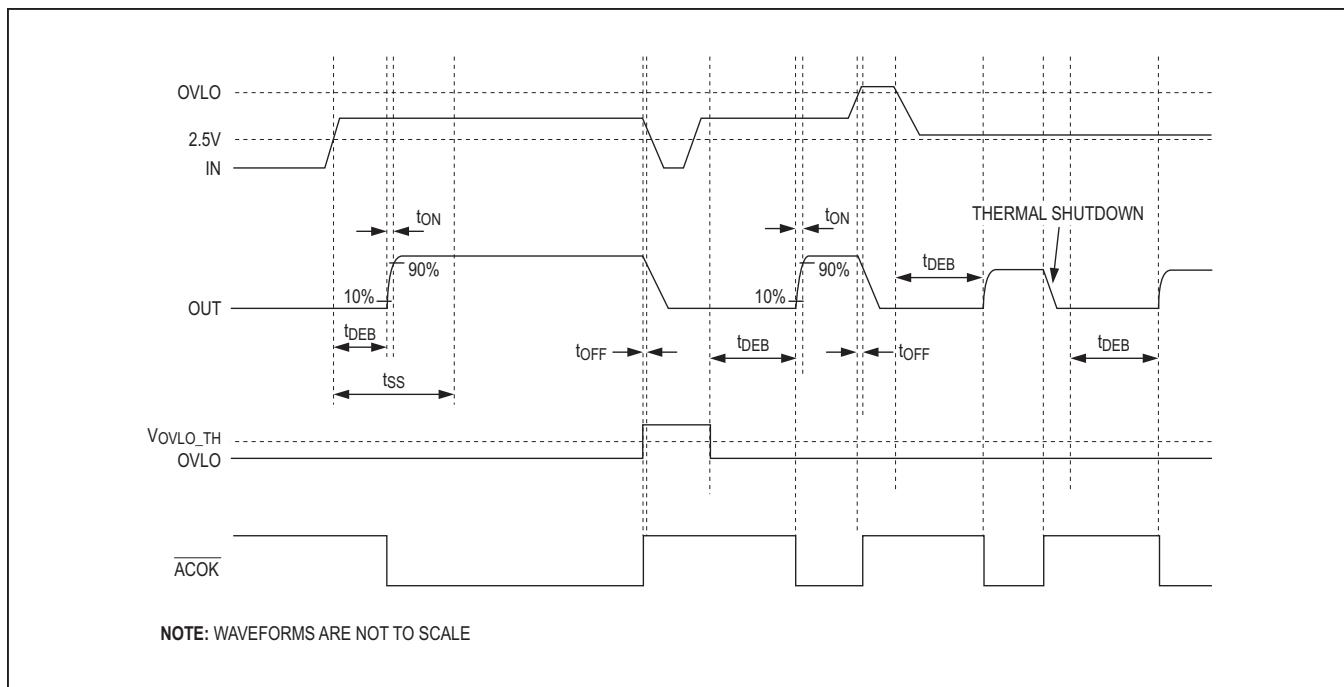
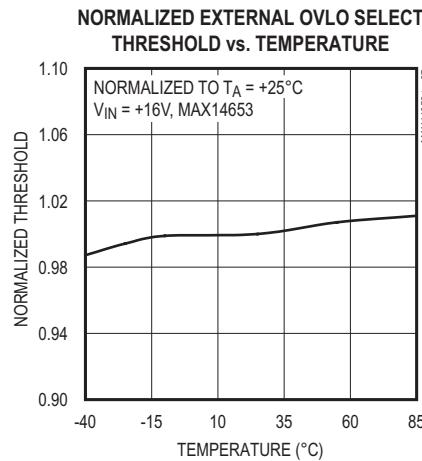
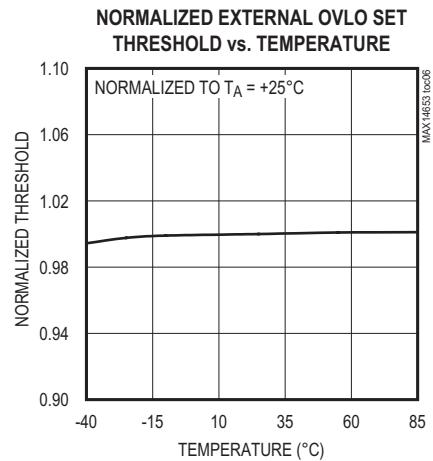
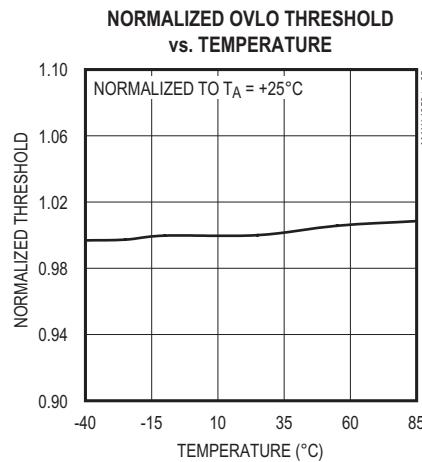
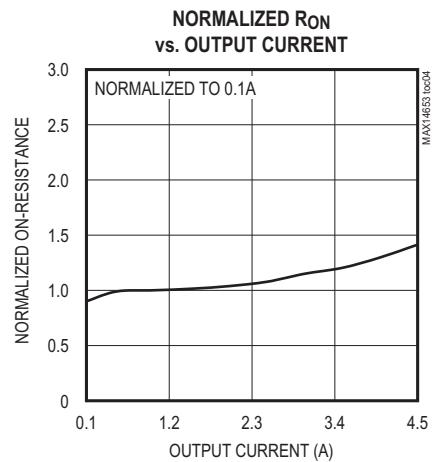
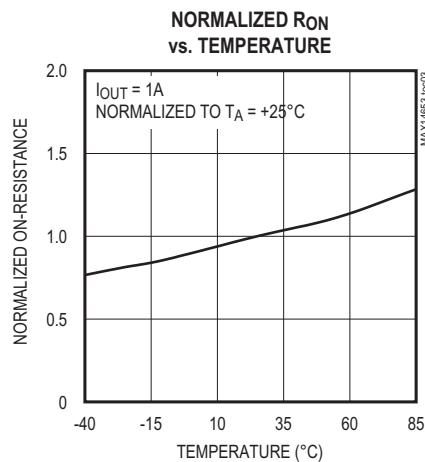
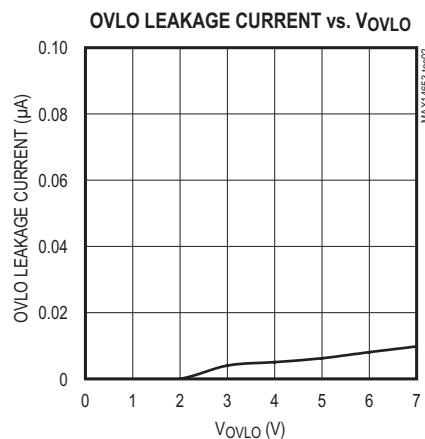
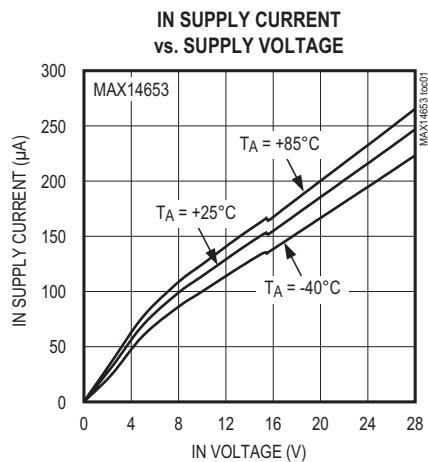
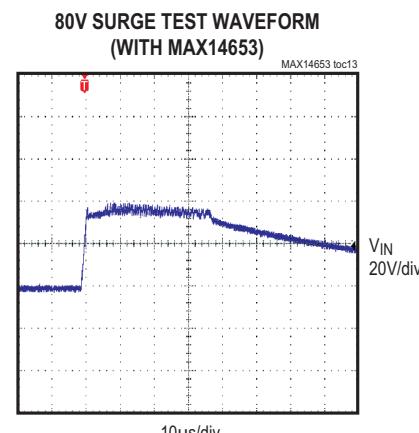
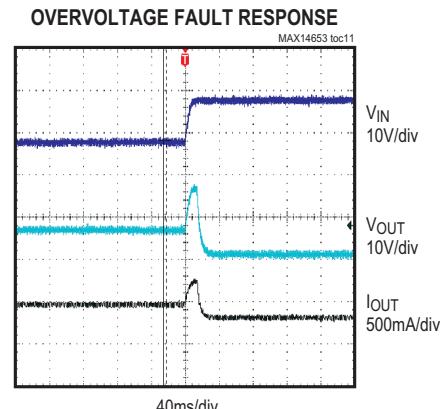
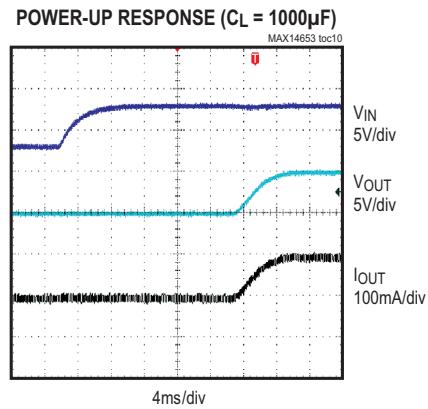
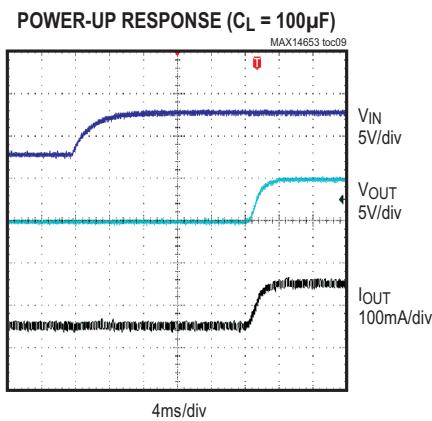
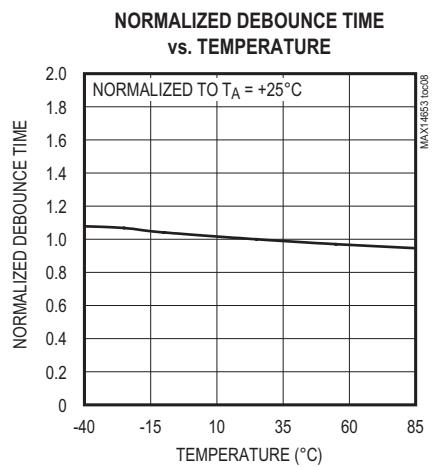
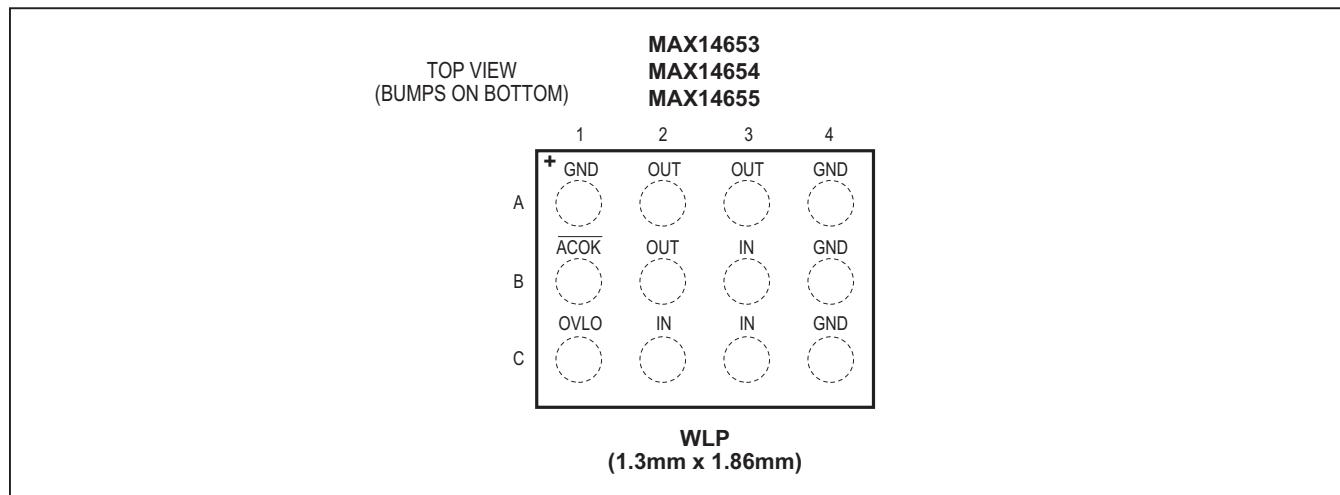









Figure 1. Timing Diagram

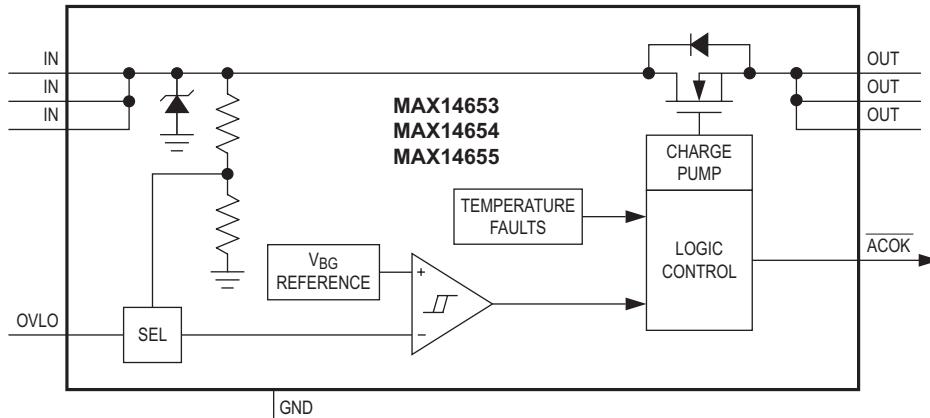





Typical Operating Characteristics

($V_{IN} = +5.0V$, $C_{IN} = 0.1\mu F$, $C_{OUT} = 1\mu F$, $T_A = +25^\circ C$, unless otherwise noted.)



Typical Operating Characteristics (continued)

($V_{IN} = +5.0V$, $C_{IN} = 0.1\mu F$, $C_{OUT} = 1\mu F$, $T_A = +25^\circ C$, unless otherwise noted.)


Pin Configuration

Pin Description

PIN	NAME	FUNCTION
A1, A4, B4, C4	GND	Ground. Connect GND pins together for proper operation.
A2, A3, B2,	OUT	Output Voltage. Output of internal switch. Connect OUT pins together for proper operation.
B1	ACOK	Open-Drain Flag Output. ACOK is driven low after input voltage is stable between minimum V_{IN} and V_{OVLO} after debounce. Connect a pullup resistor from ACOK to the logic I/O voltage of the host system. ACOK is high impedance after thermal shutdown.
B3, C2, C3	IN	Voltage Input. Bypass IN with a $0.1\mu F$ ceramic capacitor as close as possible to the device. Connect IN pins together for proper operation.
C1	OVLO	External OVLO Adjustment. Connect OVLO to GND when using the internal threshold. Connect a resistor-divider to OVLO to set a different OVLO threshold; this external resistor-divider is completely independent of the internal threshold.

Functional Diagram

Detailed Description

The MAX14653/MAX14654/MAX14655 overvoltage protection devices feature a low on-resistance (R_{ON}) internal FET and protect low-voltage systems against voltage faults up to +28V_{DC}. An internal clamp also protects the devices from surges up to +80V. If the input voltage exceeds the overvoltage threshold, the internal FET is turned off to prevent damage to the protected components. The 15ms debounce time built into the device prevents false turn on of the internal FET during startup.

Device Operation

The devices contain timing logic that controls the turn-on of the internal FET. The internal charge pump is enabled when $V_{IN} < V_{IN_OVLO}$ if internal trip thresholds are used or when $V_{IN} < V_{OVLO_TH}$ if external trip thresholds are used. The charge-pump startup, which occurs after a 15ms debounce delay, turns the internal FET on (see the *Functional Diagram*). After the debounce time, soft-start limits the FET inrush current for 30ms (typ). At any time, if V_{IN} rises above V_{OVLO_THRESH} , OUT is disconnected from IN.

Internal Switch

The MAX14653/MAX14654/MAX14655 incorporate an internal FET with a 38m Ω (typ) R_{ON} . The FET is internally driven by a charge pump that generates a necessary gate voltage above IN.

Overvoltage Lockout (OVLO)

The MAX14653 has a 15.5V (typ) overvoltage threshold (OVLO). The MAX14654 and MAX14655 have 6.8V and 5.825V (typ) OVLO thresholds, respectively.

Thermal-Shutdown Protection

The MAX14653/MAX14654/MAX14655 feature thermal shutdown circuitry. The internal FET turns off when the junction temperature exceeds +130°C (typ). The device exits thermal shutdown after the junction temperature cools by 20°C (typ).

ACOK Output

An open-drain ACOK output gives the MAX14653/MAX14654/MAX14655 the ability to communicate a stable power source to the host system. ACOK is driven low after input voltage is stable between minimum V_{IN} and V_{OVLO} after debounce. Connect a pullup resistor from ACOK to the logic I/O voltage of the host system. ACOK is high impedance after thermal shutdown.

Applications Information

IN Bypass Capacitor

For most applications, bypass IN to GND with a $0.1\mu\text{F}$ ceramic capacitor as close as possible to the device. If the power source has significant inductance due to long lead length, the device clamps the overshoot due to LC tank circuit.

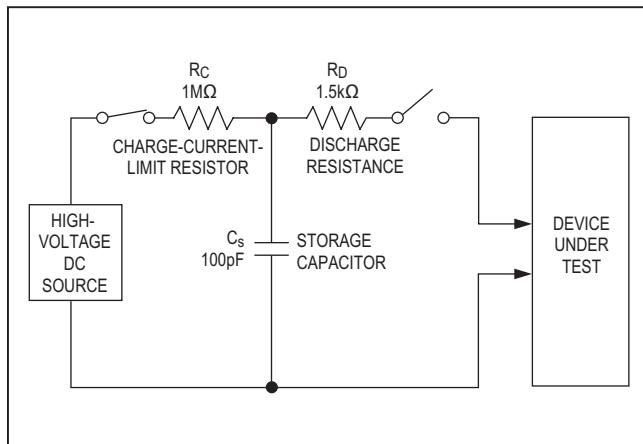


Figure 2a. Human Body ESD Test Model

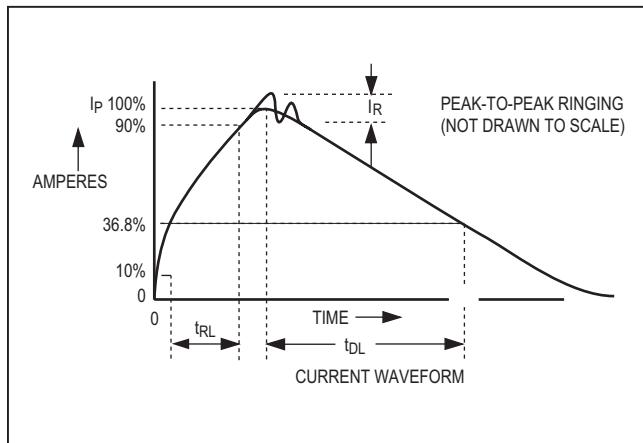


Figure 2b. Human Body Current Waveform

OUT Output Capacitor

The slow turn-on time provides a soft-start function that allows the MAX14653/MAX14654/MAX14655 to charge an output capacitor up to $1000\mu\text{F}$ without turning off due to an overcurrent condition.

External OVLO Adjustment Functionality

If OVLO is connected to ground, the internal OVLO comparator uses the internally set OVLO value.

If an external resistor-divider is connected to OVLO and V_{OVLO} exceeds the OVLO select voltage, V_{OVLO_SELECT} , the internal OVLO comparator reads the \bar{IN} fraction fixed by the external resistor divider. $R_1 = 1\text{M}\Omega$ is a good starting value for minimum current consumption. Since V_{IN_OVLO} , V_{OVLO_THRESH} , and R_1 are known, R_2 can be calculated from the following formula:

$$V_{IN_OVLO} = V_{OVLO_TH} \times \left[1 + \frac{R_1}{R_2} \right]$$

This external resistor-divider is completely independent from the internal resistor-divider.

ESD Test Conditions

ESD performance depends on a number of conditions. The MAX14653/MAX14654/MAX14655 are specified for $\pm 2\text{kV}$ HBM typical ESD on all pins, Contact and Air-Gap Discharge on pin IN. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

HBM ESD Protection

Figure 2a shows the Human Body Model, and Figure 2b shows the current waveform it generates when discharged into low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the device through a $1.5\text{k}\Omega$ resistor.

Ordering Information/Selector Guide

PART	PIN-PACKAGE	TOP MARK	OVLO (V)
MAX14653EWC+T	12 WLP	ACS	15.5
MAX14654EWC+T	12 WLP	ACT	6.8
MAX14655EWC+T	12 WLP	ACU	5.825

Note: All devices are specified over the -40°C to +85°C temperature range.

+Denotes lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
12 WLP	W121G1+1	21-0542	Refer to Application Note 1891

Chip Information

PROCESS: BiCMOS

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	1/13	Initial release	—
1	3/13	Removed future product asterisks for the MAX14653 and MAX14655	10

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Данный компонент на территории Российской Федерации**Вы можете приобрести в компании MosChip.**

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

<http://moschip.ru/get-element>

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибуторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ Р В 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru
moschip.ru_4

moschip.ru_6
moschip.ru_9