

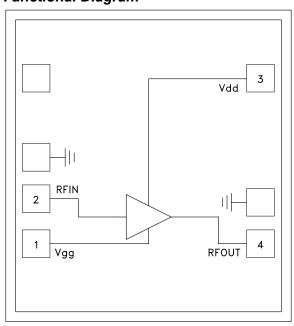
GaAs pHEMT MMIC MEDIUM POWER AMPLIFIERS, 17.5 - 25.5 GHz

Typical Applications

The HMC442 is ideal for use as a medium power amplifier for:

- Point-to-Point and Point-to-Multi-Point Radios
- VSAT

Features


Saturated Power: +23 dBm @ 25% PAE

Gain: 15 dB

Supply Voltage: +5V

50 Ohm Matched Input/Output Die Size: 1.03 x 1.13 x 0.1 mm

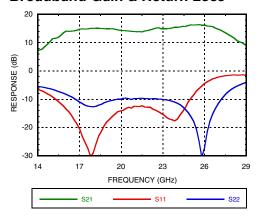
Functional Diagram

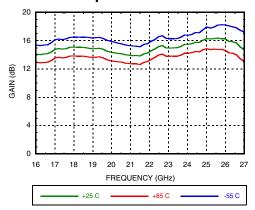
General Description

The HMC442 is an efficient GaAs PHEMT MMIC Medium Power Amplifier which operates between 17.5 and 25.5 GHz. The HMC442 provides 15 dB of gain, +23 dBm of saturated power and 25% PAE from a +5V supply voltage. The amplifier chip can easily be integrated into Multi-Chip-Modules (MCMs) due to its small size. All data is tested with the chip in a 50 Ohm test fixture connected via 0.025mm (1 mil) diameter wire bonds of minimal length 0.31mm (12 mils).

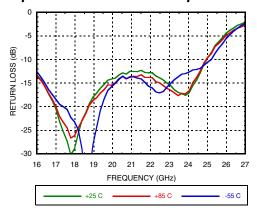
Electrical Specifications, $T_{\Delta} = +25^{\circ}$ C, Vdd = 5V, $Idd = 85mA^{*}$

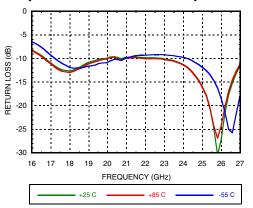
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		17.5 - 21.0			21.0 - 24.0			24.0 - 25.5		GHz
Gain	12	14.5		12	15		13.5	16		dB
Gain Variation Over Temperature		0.02	0.03		0.02	0.03		0.02	0.03	dB/ °C
Input Return Loss		15			13			10		dB
Output Return Loss		10			10			10		dB
Output Power for 1 dB Compression (P1dB)	18	21		18.5	21.5		19	22		dBm
Saturated Output Power (Psat)	20	23		20	23		20	23.5		dBm
Output Third Order Intercept (IP3)		29			28			27		dBm
Noise Figure		6.5			5.5			6		dB
Supply Current (Idd)(Vdd = 5V, Vgg = -1V Typ.)		85	110		85	110		85	110	mA

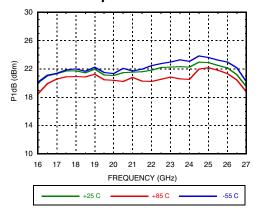

^{*} Adjust Vgg between -1.5 to -0.5V to achieve Idd = 85mA typical.

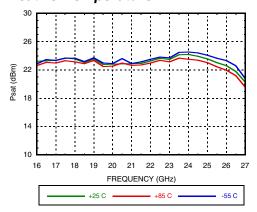


GaAs pHEMT MMIC MEDIUM POWER AMPLIFIERS, 17.5 - 25.5 GHz


Broadband Gain & Return Loss

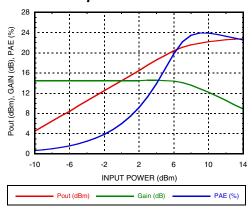

Gain vs. Temperature

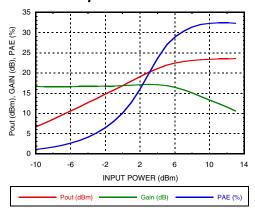

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

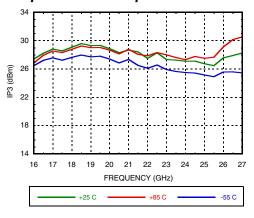
P1dB vs. Temperature

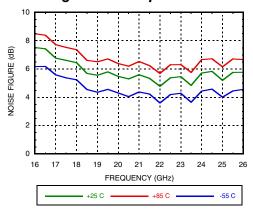
Psat vs. Temperature

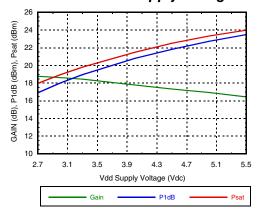


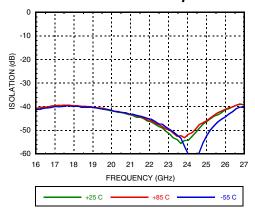


GaAs pHEMT MMIC MEDIUM POWER AMPLIFIERS, 17.5 - 25.5 GHz


Power Compression @ 21 GHz


Power Compression @ 25 GHz


Output IP3 vs. Temperature


Noise Figure vs. Temperature

Gain & Power vs. Supply Voltage @ 25 GHz

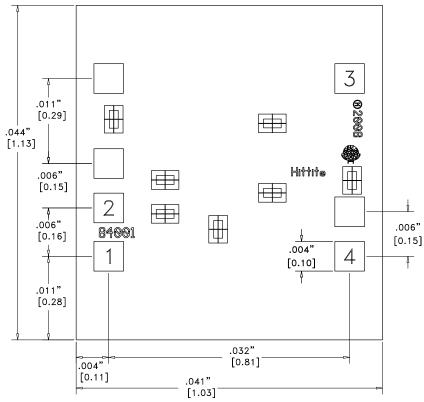
Reverse Isolation vs. Temperature

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIERS, 17.5 - 25.5 GHz

Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	+5.5 Vdc		
Gate Bias Voltage (Vgg)	-4 to 0 Vdc		
RF Input Power (RFIN)(Vdd = +5Vdc)	+20 dBm		
Channel Temperature	175 °C		
Continuous Pdiss (T= 85 °C) (derate 7.1 mW/°C above 85 °C)	0.64 W		
Thermal Resistance (channel to die bottom)	141 °C/W		
Storage Temperature	-65 to +150 °C		
Operating Temperature	-55 to +85 °C		

Typical Supply Current vs. Vdd


Vdd (Vdc)	Idd (mA)
+4.5	82
+5.0	85
+5.5	89
+2.7	79
+3.0	83
+3.3	86

Note: Amplifier will operate over full voltage ranges shown above

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

Die Packaging Information [1]

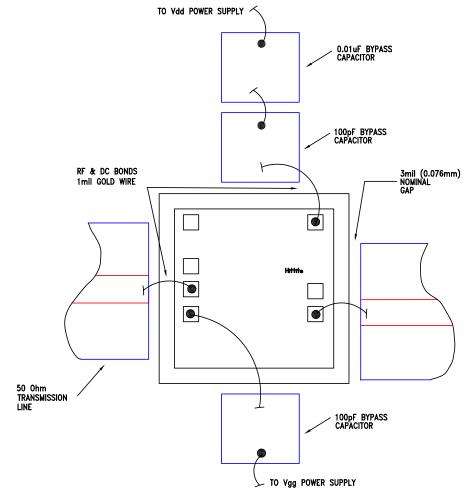
Standard	Alternate
GP-2 (Gel Pack)	[2]

[1] Refer to the "Packaging Information" section for die packaging dimensions.

[2] For alternate packaging information contact Hittite Microwave Corporation.

NOTES

- 1. ALL DIMENSIONS ARE IN INCHES [MM]
- 2. DIE THICKNESS IS .004"
- 3. TYPICAL BOND IS .004" SQUARE
- 4. BACKSIDE METALLIZATION: GOLD
- 5. BOND PAD METALLIZATION: GOLD
- 6. BACKSIDE METAL IS GROUND.
- CONNECTION NOT REQUIRED FOR UNLABELED BOND PADS.



GaAs pHEMT MMIC MEDIUM POWER AMPLIFIERS, 17.5 - 25.5 GHz

Pad Descriptions

Pad Number	Function	Description	Pin Schematic
1	Vgg	Gate control for amplifier. Adjust to achieve Id of 85mA. Please follow "MMIC Amplifier Biasing Procedure" Application Note.	Vgg
2	RFIN	This pad is AC coupled and matched to 50 Ohms	RFIN ○──
3	Vdd	Power Supply Voltage for the amplifier. External bypass capacitors of 100 pF and 0.01 μF are required.	Vdd
4	RFOUT	This pad is AC coupled and matched to 50 Ohms.	— —○ RFOUT

Assembly Diagram

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIERS, 17.5 - 25.5 GHz

Mounting & Bonding Techniques for Millimeterwave GaAs MMICs

The die should be attached directly to the ground plane eutectically or with conductive epoxy (see HMC general Handling, Mounting, Bonding Note).

50 Ohm Microstrip transmission lines on 0.127mm (5 mil) thick alumina thin film substrates are recommended for bringing RF to and from the chip (Figure 1). If 0.254mm (10 mil) thick alumina thin film substrates must be used, the die should be raised 0.150mm (6 mils) so that the surface of the die is coplanar with the surface of the substrate. One way to accomplish this is to attach the 0.102mm (4 mil) thick die to a 0.150mm (6 mil) thick molybdenum heat spreader (moly-tab) which is then attached to the ground plane (Figure 2).

Microstrip substrates should be located as close to the die as possible in order to minimize bond wire length. Typical die-to-substrate spacing is 0.076mm to 0.152 mm (3 to 6 mils).

Handling Precautions

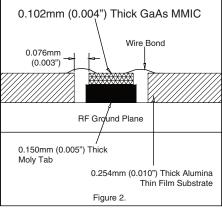
Follow these precautions to avoid permanent damage.

Storage: All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment.

Cleanliness: Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.

Static Sensitivity: Follow ESD precautions to protect against $> \pm 250$ V ESD strikes.

Transients: Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pickup.


0.102mm (0.004") Thick GaAs MMIC

Wire Bond

0.076mm
(0.003")

RF Ground Plane

0.127mm (0.005") Thick Alumina
Thin Film Substrate
Figure 1.

General Handling: Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip may have fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers.

Mounting

The chip is back-metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. The mounting surface should be clean and flat.

Eutectic Die Attach: A 80/20 gold tin preform is recommended with a work surface temperature of 255 °C and a tool temperature of 265 °C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 °C. DO NOT expose the chip to a temperature greater than 320 °C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment.

Epoxy Die Attach: Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer's schedule.

Wire Bonding

Ball or wedge bond with 0.025mm (1 mil) diameter pure gold wire. Thermosonic wirebonding with a nominal stage temperature of 150 °C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use the minimum level of ultrasonic energy to achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on the package or substrate. All bonds should be as short as possible <0.31mm (12 mils).

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9