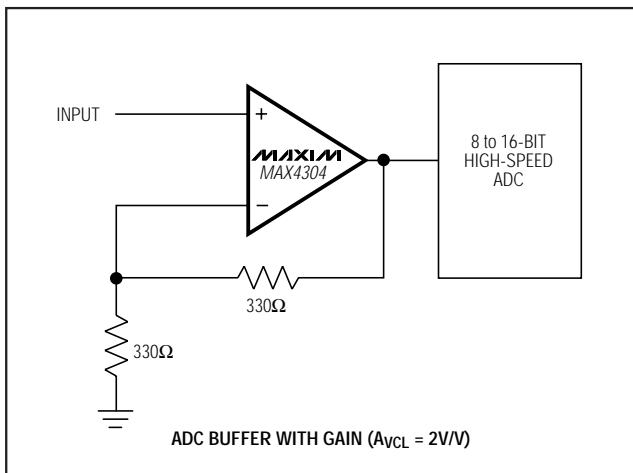


# 740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5

## General Description


The MAX4104/MAX4105/MAX4304/MAX4305 op amps feature ultra-high speed, low noise, and low distortion in a SOT23 package. The unity-gain-stable MAX4104 requires only 20mA of supply current while delivering 625MHz bandwidth and 400V/ $\mu$ s slew rate. The MAX4304, compensated for gains of +2V/V or greater, delivers a 730MHz bandwidth and a 1000V/ $\mu$ s slew rate. The MAX4105 is compensated for a minimum gain of +5V/V and delivers a 410MHz bandwidth and a 1400V/sec slew rate. The MAX4305 has +10V/V minimum gain compensation and delivers a 340MHz bandwidth and a 1400V/ $\mu$ s slew rate.

Low voltage noise density of 2.1nV/ $\sqrt{\text{Hz}}$  and -88dBc spurious-free dynamic range make these devices ideal for low-noise/low-distortion video and telecommunications applications. These op amps also feature a wide output voltage swing of  $\pm 3.7V$  and  $\pm 70\text{mA}$  output current-drive capability. For space-critical applications, they are available in a miniature 5-pin SOT23 package.

## Applications

- Video ADC Preamp
- Pulse/RF Telecom Applications
- Video Buffers and Cable Drivers
- Ultrasound
- Active Filters
- ADC Input Buffers

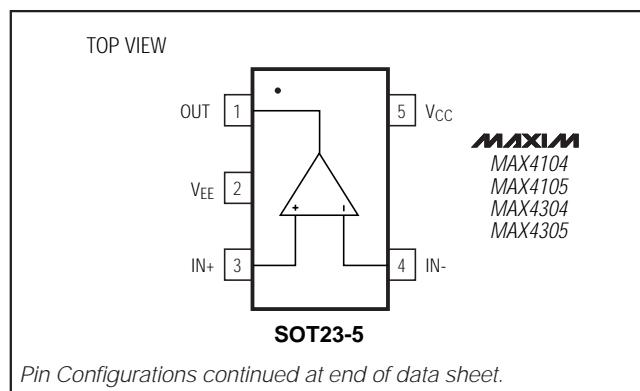
## Typical Application Circuit



## Features

- ♦ Low 2.1nV/ $\sqrt{\text{Hz}}$  Voltage Noise Density
- ♦ Ultra-High 740MHz -3dB Bandwidth (MAX4304,  $\text{AvCL} = 2\text{V/V}$ )
- ♦ 100MHz 0.1dB Gain Flatness (MAX4104/4105)
- ♦ 1400V/ $\mu$ s Slew Rate (MAX4105/4305)
- ♦ -88dBc SFDR (5MHz,  $\text{RL} = 100\Omega$ ) (MAX4104/4304)
- ♦ High Output Current Drive:  $\pm 70\text{mA}$
- ♦ Low Differential Gain/Phase Error: 0.01%/0.01° (MAX4104/4304)
- ♦ Low  $\pm 1\text{mV}$  Input Offset Voltage
- ♦ Available in Space-Saving 5-Pin SOT23 Package

## Selector Guide


| PART    | MINIMUM STABLE GAIN (V/V) | BANDWIDTH (MHz) | PIN-PACKAGE           |
|---------|---------------------------|-----------------|-----------------------|
| MAX4104 | 1                         | 625             | 5-pin SOT23, 8-pin SO |
| MAX4304 | 2                         | 740             | 5-pin SOT23, 8-pin SO |
| MAX4105 | 5                         | 410             | 5-pin SOT23, 8-pin SO |
| MAX4305 | 10                        | 340             | 5-pin SOT23, 8-pin SO |

## Ordering Information

| PART         | TEMP. RANGE    | PIN-PACKAGE | SOT TOP MARK |
|--------------|----------------|-------------|--------------|
| MAX4104ESA   | -40°C to +85°C | 8 SO        | —            |
| MAX4104EUK-T | -40°C to +85°C | 5 SOT23-5   | ACCO         |

Ordering Information continued at end of data sheet.

## Pin Configurations



# 740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage ( $V_{CC}$  to  $V_{EE}$ ) ..... +12V  
 Voltage on Any Pin to Ground ..... ( $V_{EE}$  - 0.3V) to ( $V_{CC}$  + 0.3V)  
 Short-Circuit Duration ( $V_{OUT}$  to GND) ..... Continuous  
 Continuous Power Dissipation ( $T_A = +70^\circ\text{C}$ )  
 5-pin SOT23 (derate 7.1mW/ $^\circ\text{C}$  above  $+70^\circ\text{C}$ ) ..... 571mW  
 8-pin SO (derate 5.9mW/ $^\circ\text{C}$  above  $+70^\circ\text{C}$ ) ..... 471mW

Operating Temperature Range ..... -40 $^\circ\text{C}$  to +85 $^\circ\text{C}$   
 Storage Temperature Range ..... -65 $^\circ\text{C}$  to +150 $^\circ\text{C}$   
 Lead Temperature (soldering, 10sec) ..... +300 $^\circ\text{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC ELECTRICAL CHARACTERISTICS

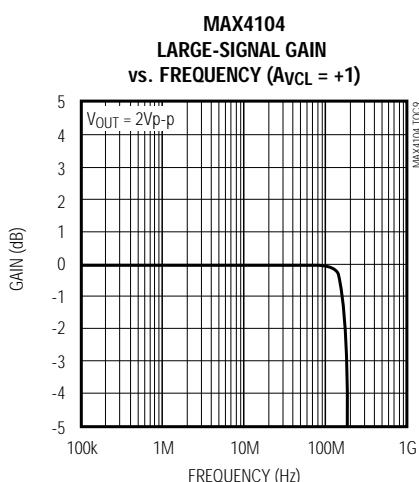
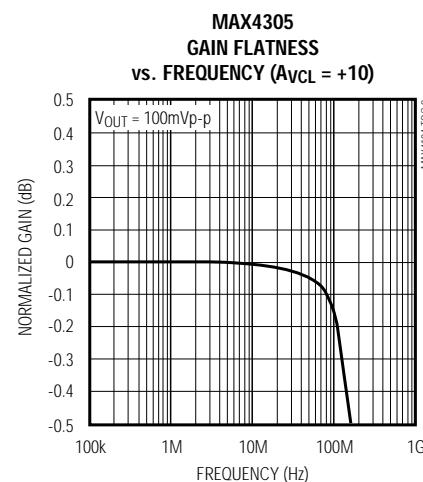
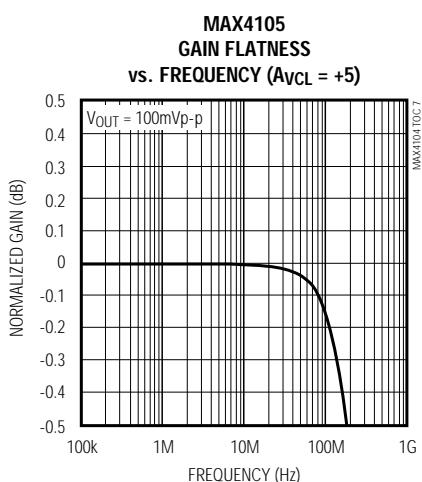
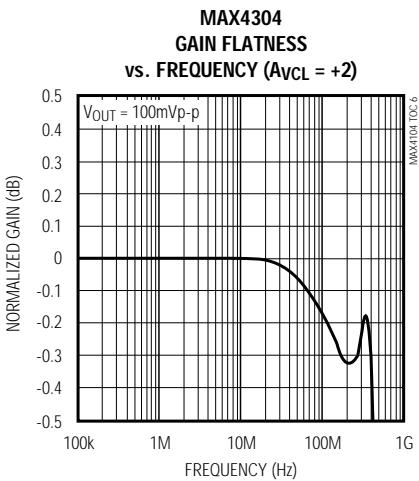
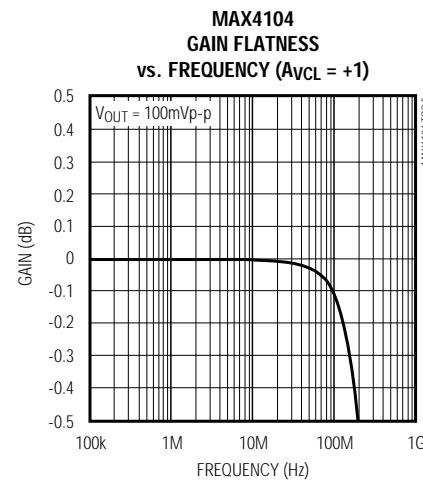
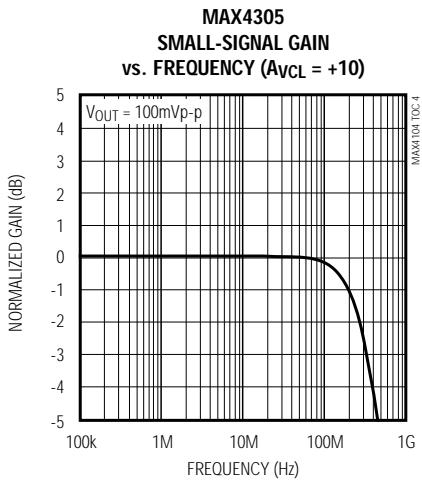
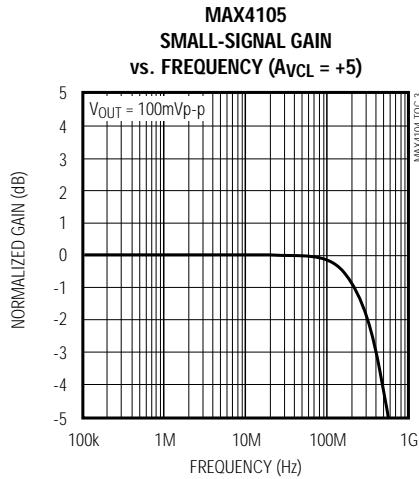
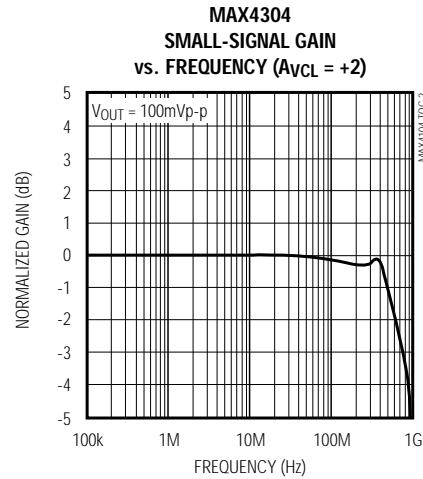
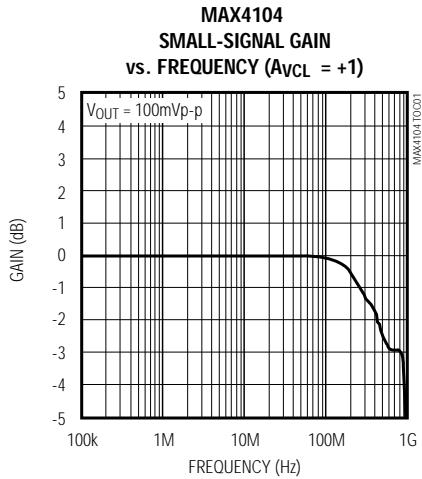
( $V_{CC} = +5\text{V}$ ,  $V_{EE} = -5\text{V}$ ,  $V_{CM} = 0$ ,  $R_L = 100\text{k}\Omega$ ,  $T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ .)

| PARAMETER                             | SYMBOL          | CONDITIONS                                                               |            | MIN                    | TYP      | MAX                          | UNITS         |  |
|---------------------------------------|-----------------|--------------------------------------------------------------------------|------------|------------------------|----------|------------------------------|---------------|--|
| Operating Supply Voltage Range        | $V_{CC}/V_{EE}$ | Guaranteed by PSRR test                                                  |            | $\pm 3.5$              | $\pm 5$  | $\pm 5.5$                    | V             |  |
| Input Offset Voltage                  | $V_{OS}$        | $V_{OUT} = 0$                                                            | MAX4_0_ESA | 1                      | 6        | 8                            | mV            |  |
|                                       |                 |                                                                          | MAX4_0_EUK |                        |          |                              |               |  |
| Input Offset-Voltage Drift            | $TCV_{OS}$      |                                                                          |            | 2.5                    |          | $\mu\text{V}/^\circ\text{C}$ |               |  |
| Input Bias Current                    | $I_B$           |                                                                          |            | 32                     |          | 70                           | $\mu\text{A}$ |  |
| Input Offset Current                  | $I_{OS}$        |                                                                          |            | 0.5                    |          | 5.0                          | $\mu\text{A}$ |  |
| Differential Input Resistance         | $R_{IN}$        | $-0.8\text{V} \leq V_{IN} \leq 0.8\text{V}$                              |            | 6                      |          | $\text{k}\Omega$             |               |  |
| Common-Mode Input Resistance          | $R_{IN}$        | Either input                                                             |            | 1.5                    |          | $\text{M}\Omega$             |               |  |
| Input Common-Mode Voltage Range       | $V_{CM}$        | Guaranteed by CMRR test                                                  |            | -2.8                   |          | +4.1                         | V             |  |
| Common-Mode Rejection Ratio           | $CMRR$          | $-2.8\text{V} \leq V_{CM} \leq 4.1\text{V}$                              |            | 80                     | 95       | dB                           |               |  |
| Positive Power-Supply Rejection Ratio | $PSSR+$         | $V_{CC} = 3.5\text{V}$ to $5.5\text{V}$                                  |            | 75                     | 85       | dB                           |               |  |
| Negative Power-Supply Rejection Ratio | $PSRR-$         | $V_{EE} = -3.5\text{V}$ to $-5.5\text{V}$                                |            | 55                     | 65       | dB                           |               |  |
| Quiescent Supply Current              | $I_S$           | $V_{OUT} = 0$                                                            |            | 20                     |          | 27                           | mA            |  |
| Open-Loop Gain                        | $A_{VOL}$       | $-2.8\text{V} \leq V_{OUT} \leq 2.8\text{V}$ , $R_L = 100\text{k}\Omega$ |            | 55                     | 65       | dB                           |               |  |
| Output Voltage Swing                  | $V_{OUT}$       | $R_L = 100\text{k}\Omega$                                                |            | $\pm 3.5$ -3.7 to +3.8 |          | V                            |               |  |
|                                       |                 | $R_L = 100\Omega$                                                        |            | $\pm 3.0$ -3.5 to +3.4 |          |                              |               |  |
| Output Current Drive                  | $I_{OUT}$       | $R_L = 30\Omega$                                                         |            | $\pm 53$               | $\pm 70$ | mA                           |               |  |
| Short-Circuit Output Current          | $I_{SC}$        | $R_L$ = short to ground                                                  |            | 80                     |          | mA                           |               |  |
| Open-Loop Output Impedance            | $Z_{OUT}$       |                                                                          |            | 9                      |          | $\Omega$                     |               |  |

# 740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5

## AC ELECTRICAL CHARACTERISTICS

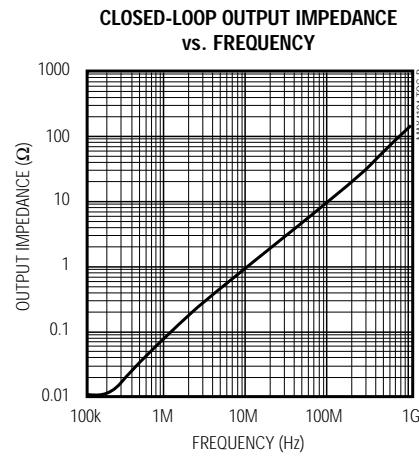
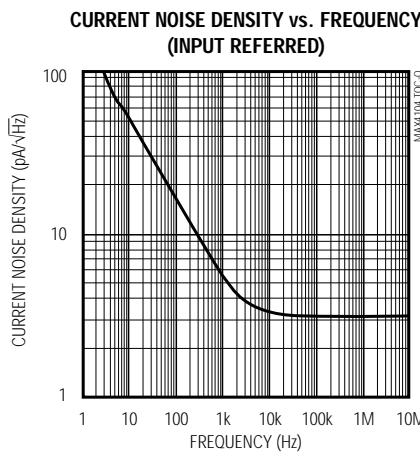
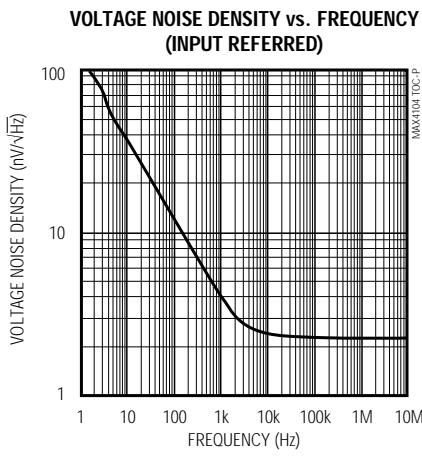
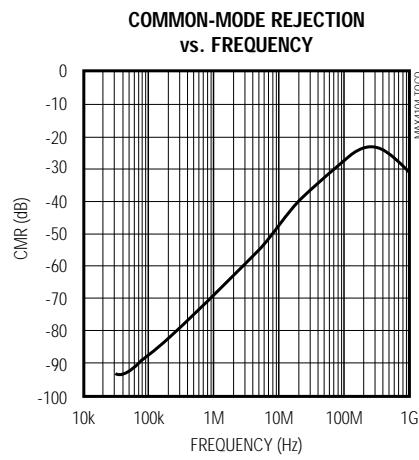
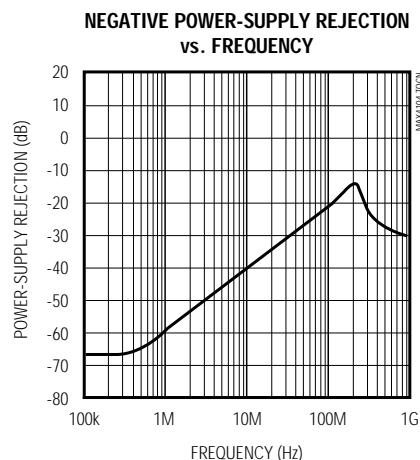
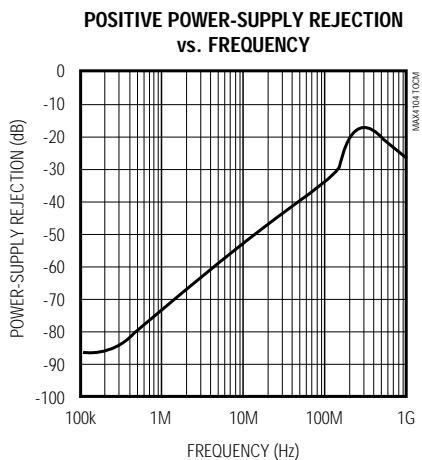
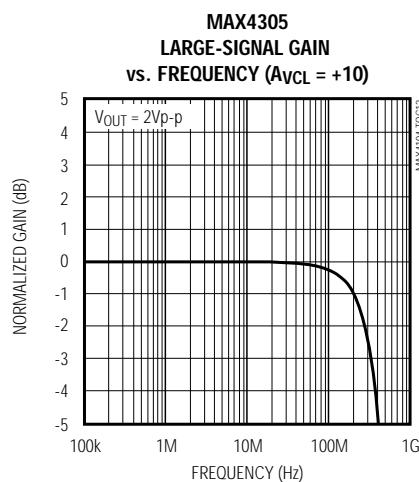
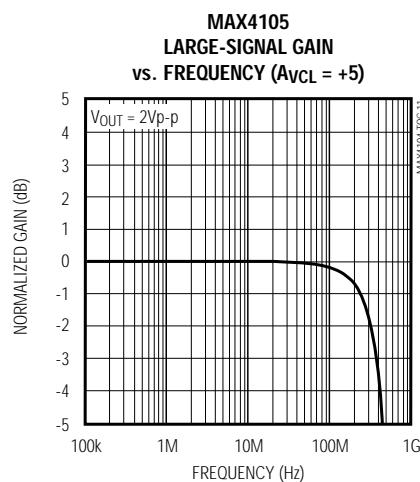
( $V_{CC} = +5V$ ,  $V_{EE} = -5V$ ,  $V_{CM} = 0$ ,  $R_L = 100\Omega$ ;  $A_V = +1V/V$  for MAX4104,  $+2V/V$  for MAX4304,  $+5V/V$  for MAX4105,  $+10V/V$  for MAX4305;  $T_A = +25^\circ C$ ; unless otherwise noted.)










| PARAMETER                      | SYMBOL           | CONDITIONS                  |                        |                       | MIN  | TYP     | MAX    | UNITS |
|--------------------------------|------------------|-----------------------------|------------------------|-----------------------|------|---------|--------|-------|
| -3dB Bandwidth                 | BW(-3dB)         | V <sub>OUT</sub> = 100mVp-p | MAX4104                | 625                   | MHz  |         |        |       |
|                                |                  |                             | MAX4304                | 740                   |      |         |        |       |
|                                |                  |                             | MAX4105                | 410                   |      |         |        |       |
|                                |                  |                             | MAX4305                | 340                   |      |         |        |       |
| 0.1dB Bandwidth                | BW(0.1)          | V <sub>OUT</sub> = 100mVp-p | MAX4104                | 100                   | MHz  |         |        |       |
|                                |                  |                             | MAX4304                | 60                    |      |         |        |       |
|                                |                  |                             | MAX4105                | 80                    |      |         |        |       |
|                                |                  |                             | MAX4305                | 70                    |      |         |        |       |
| Full-Power Bandwidth           | FPBW             | V <sub>OUT</sub> = 2Vp-p    | MAX4104                | 115                   | MHz  |         |        |       |
|                                |                  |                             | MAX4304                | 285                   |      |         |        |       |
|                                |                  |                             | MAX4105                | 370                   |      |         |        |       |
|                                |                  |                             | MAX4305                | 320                   |      |         |        |       |
| Slew Rate                      | SR               | V <sub>OUT</sub> = 2Vp-p    | MAX4104                | 400                   | V/μs |         |        |       |
|                                |                  |                             | MAX4304                | 1000                  |      |         |        |       |
|                                |                  |                             | MAX4105                | 1400                  |      |         |        |       |
|                                |                  |                             | MAX4305                | 1400                  |      |         |        |       |
| Settling Time to 0.1%          | ts               | V <sub>OUT</sub> = 2Vp-p    | to 0.1%                | 20                    | ns   |         |        |       |
|                                |                  |                             | to 0.01%               | 25                    |      |         |        |       |
| Spurious-Free<br>Dynamic Range | SFDR             | V <sub>OUT</sub> = 2Vp-p    | MAX4104/<br>MAX4304    | f <sub>C</sub> = 5MHz | -88  | dBc     |        |       |
|                                |                  |                             | f <sub>C</sub> = 20MHz |                       | -67  |         |        |       |
|                                |                  |                             | MAX4105/<br>MAX4305    | f <sub>C</sub> = 5MHz | -74  |         |        |       |
|                                |                  |                             | f <sub>C</sub> = 20MHz |                       | -61  |         |        |       |
| Differential Gain Error        | DG               | NTSC, R <sub>L</sub> = 150Ω | MAX4104/MAX4304        |                       | 0.01 | %       |        |       |
|                                |                  |                             | MAX4105/MAX4305        |                       | 0.02 |         |        |       |
| Differential Phase Error       | DP               | NTSC, R <sub>L</sub> = 150Ω | MAX4104/MAX4304        |                       | 0.01 | degrees |        |       |
|                                |                  |                             | MAX4105/MAX4305        |                       | 0.02 |         |        |       |
| Input Voltage Noise Density    | e <sub>n</sub>   | f = 1MHz                    |                        |                       | 2.1  |         | nV/√Hz |       |
| Input Current Noise Density    | i <sub>n</sub>   | f = 1MHz                    |                        |                       | 3.1  |         | pA/√Hz |       |
| Output Impedance               | Z <sub>OUT</sub> | f = 10MHz                   |                        |                       | 1    |         | Ω      |       |

MAX4104/MAX4105/MAX4304/MAX4305

# 740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5

## Typical Operating Characteristics

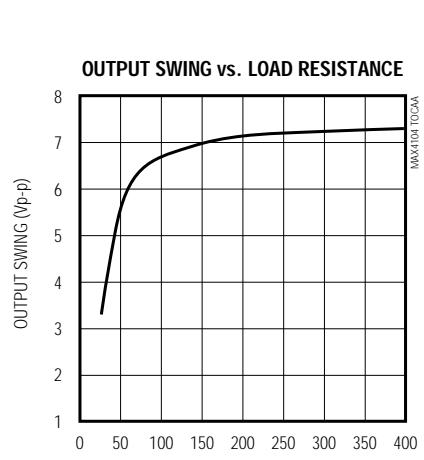
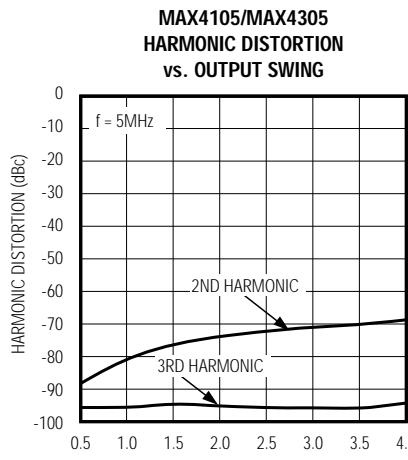
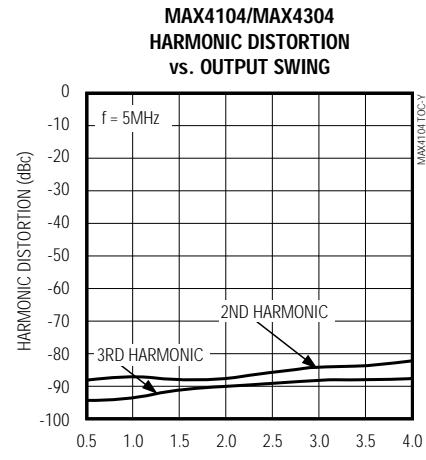
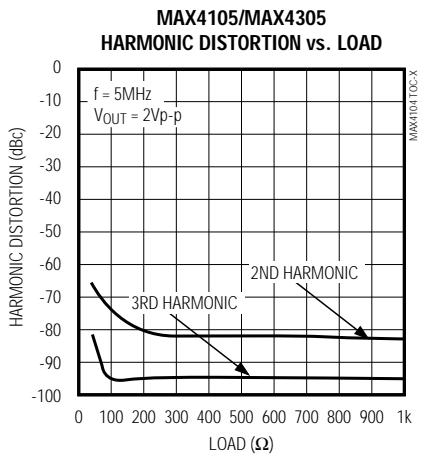
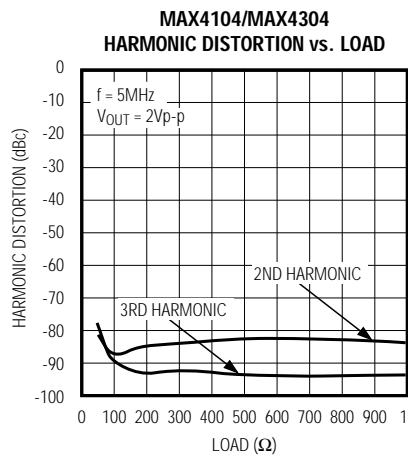
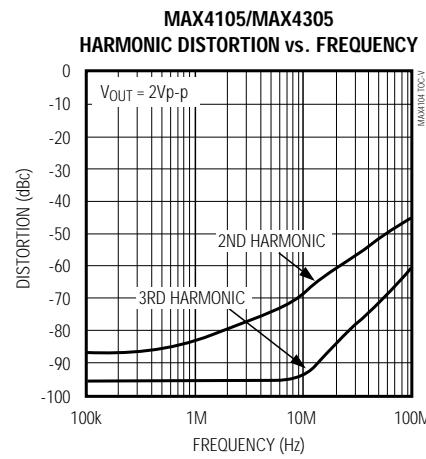
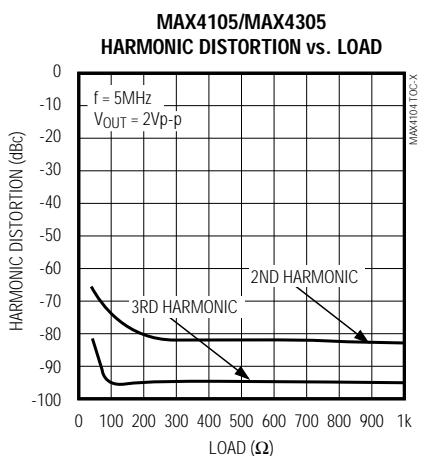
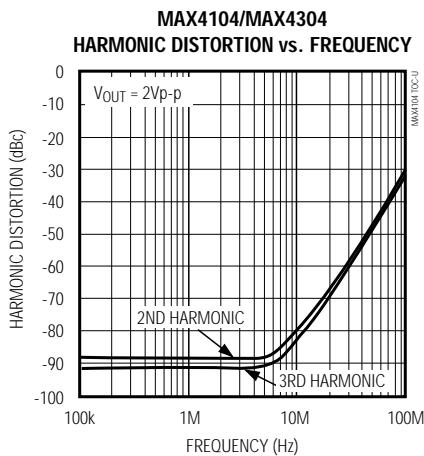
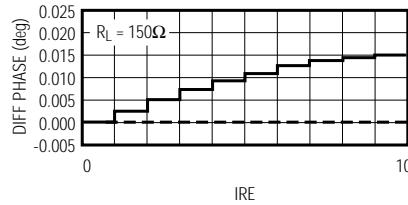
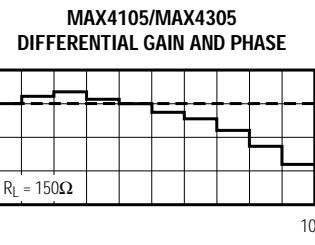
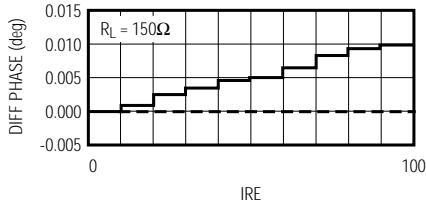
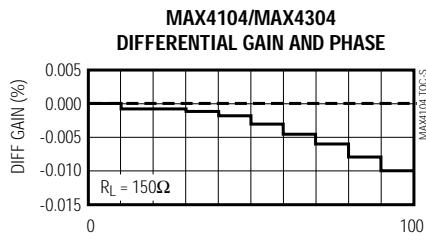








( $V_{CC} = +5V$ ,  $V_{EE} = -5V$ ,  $R_F = 330\Omega$ ,  $R_L = 100\Omega$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)



# 740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5

## Typical Operating Characteristics (continued)

( $V_{CC} = +5V$ ,  $V_{EE} = -5V$ ,  $R_F = 330\Omega$ ,  $R_L = 100\Omega$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)

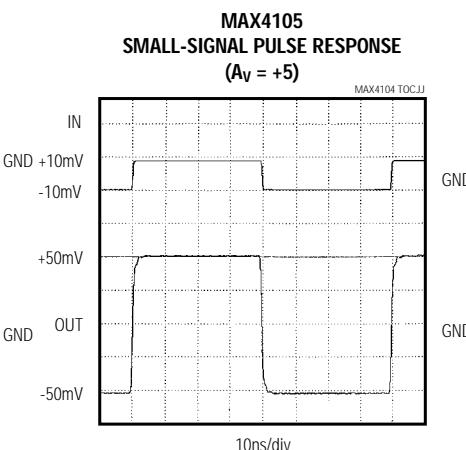
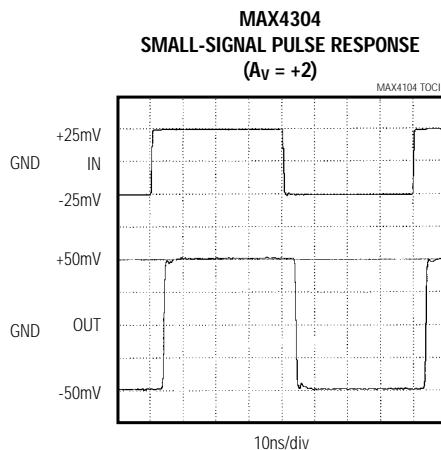
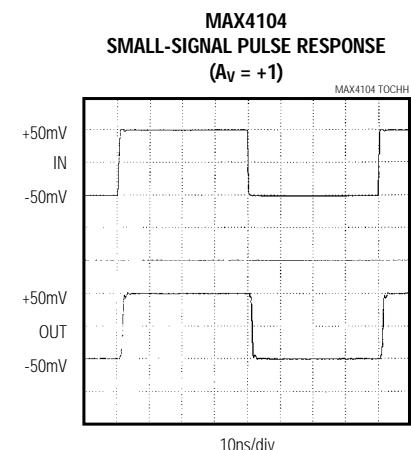
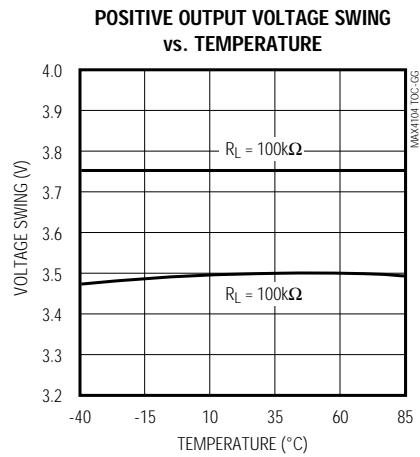
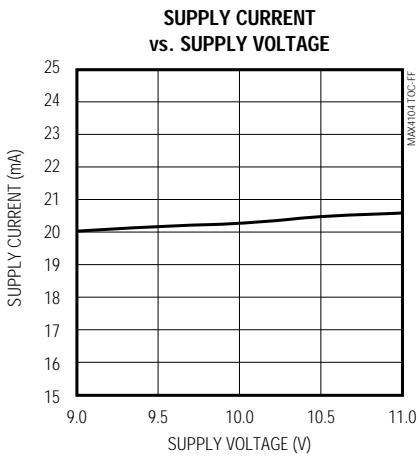
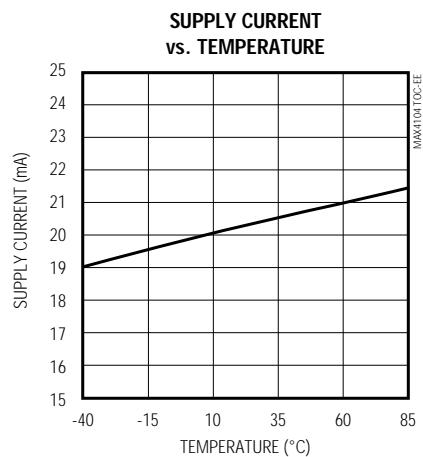
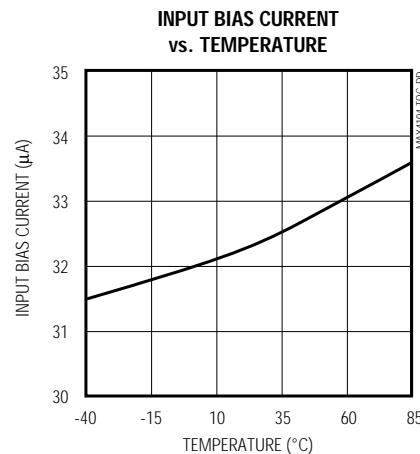
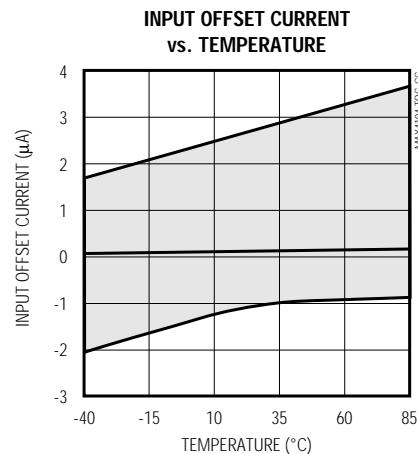
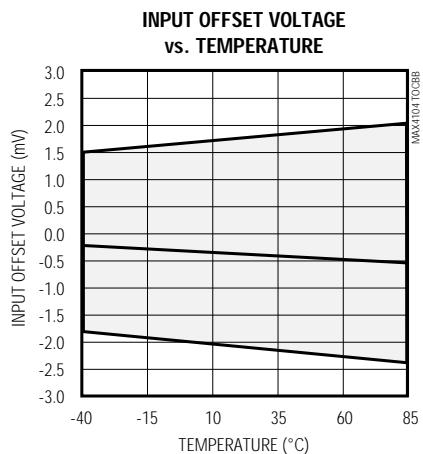














MAX4104/MAX4105/MAX4304/MAX4305

# 740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5

## Typical Operating Characteristics (continued)

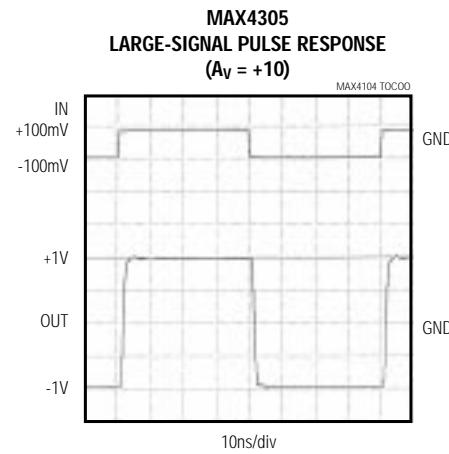
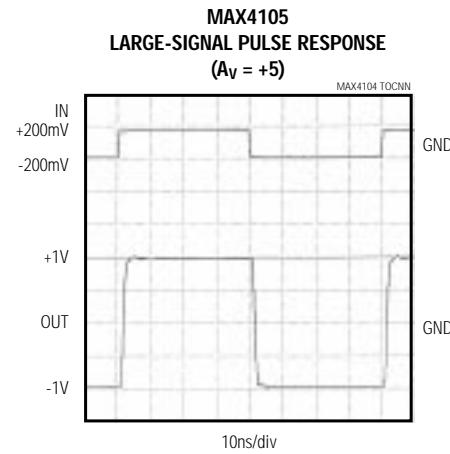
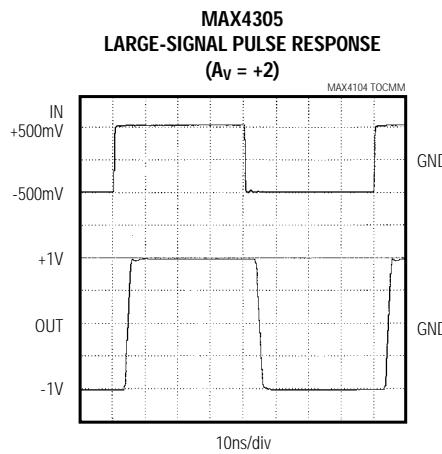
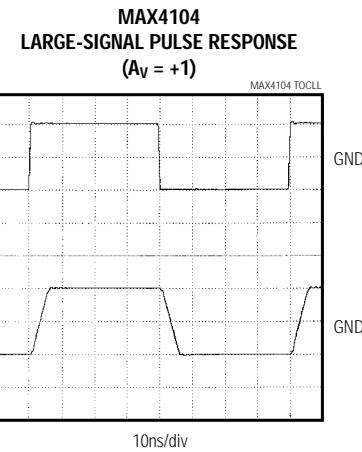
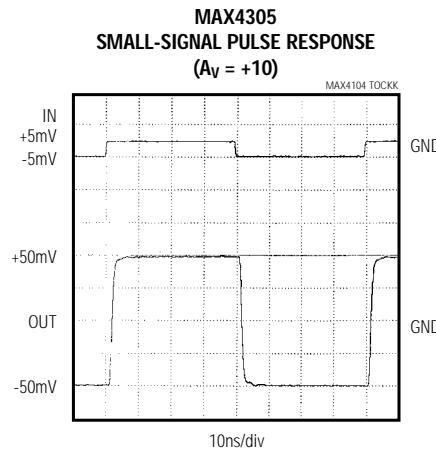
( $V_{CC} = +5V$ ,  $V_{EE} = -5V$ ,  $R_F = 330\Omega$ ,  $R_L = 100\Omega$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)


# 740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5

## Typical Operating Characteristics (continued)

( $V_{CC} = +5V$ ,  $V_{EE} = -5V$ ,  $R_F = 330\Omega$ ,  $R_L = 100\Omega$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)






MAX4104/MAX4105/MAX4304/MAX4305



# 740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5

## Typical Operating Characteristics (continued)

( $V_{CC} = +5V$ ,  $V_{EE} = -5V$ ,  $R_F = 330\Omega$ ,  $R_L = 100\Omega$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)



# 740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5

MAX4104/MAX4105/MAX4304/MAX4305

## Pin Description

| PIN     |         | NAME            | FUNCTION                     |
|---------|---------|-----------------|------------------------------|
| SOT23-5 | SO      |                 |                              |
| —       | 1, 5, 8 | N.C.            | Not internally connected.    |
| 4       | 2       | IN-             | Amplifier Inverting Input    |
| 3       | 3       | IN+             | Amplifier Noninverting Input |
| 2       | 4       | V <sub>EE</sub> | Negative Power Supply        |
| 1       | 6       | OUT             | Amplifier Output             |
| 5       | 7       | V <sub>CC</sub> | Positive Power Supply        |

## Detailed Description

The MAX4104/MAX4105/MAX4304/MAX4305 are ultra-high-speed, low-noise amplifiers featuring -3dB bandwidths up to 880MHz, 0.1dB gain flatness up to 100MHz, and low differential gain and phase errors of 0.01% and 0.01°, respectively. These devices operate on dual power supplies ranging from  $\pm 3.5V$  to  $\pm 5.5V$  and require only 20mA of supply current.

The MAX4104/MAX4304/MAX4105/MAX4305 are optimized for minimum closed-loop gains of +1V/V, +2V/V, +5V/V and +10V/V (respectively) with corresponding -3dB bandwidths of 880MHz, 730MHz, 430MHz, and 350MHz. Each device in this family features a low input voltage noise density of only 2.1nV/ $\sqrt{\text{Hz}}$  (at 1MHz), an output current drive of  $\pm 70\text{mA}$ , and spurious-free dynamic range as low as -88dBc (5MHz,  $R_L = 100\Omega$ ).

## Applications Information

### Layout and Power-Supply Bypassing

The MAX4104/MAX4105/MAX4304/MAX4305 have an extremely high bandwidth, and consequently require careful board layout, including the possible use of constant-impedance microstrip or stripline techniques.

To realize the full AC performance of these high-speed amplifiers, pay careful attention to power-supply bypassing and board layout. The PC board should have at least two layers: a signal and power layer on one side, and a large, low-impedance ground plane on the other side. The ground plane should be as free of voids as possible. With multilayer boards, locate the ground plane on a layer that incorporates no signal or power traces.

Regardless of whether or not a constant-impedance board is used, it is best to observe the following guidelines when designing the board:

- 1) Do not use wire-wrapped boards (they are much too inductive) or breadboards (they are much too capacitive).
- 2) Do not use IC sockets. IC sockets increase reactances.
- 3) Keep signal lines as short and straight as possible. Do not make 90° turns; round all corners.
- 4) Observe high-frequency bypassing techniques to maintain the amplifier's accuracy and stability.
- 5) Bear in mind that, in general, surface-mount components have shorter bodies and lower parasitic reactance, resulting in greatly improved high-frequency performance over through-hole components.

The bypass capacitors should include 1nF and 0.1 $\mu\text{F}$  ceramic surface-mount capacitors between each supply pin and the ground plane, located as close to the package as possible. Optionally, place a 10 $\mu\text{F}$  tantalum capacitor at the power supply pins' point of entry to the PC board to ensure the integrity of incoming supplies. The power-supply trace should lead directly from the tantalum capacitor to the V<sub>CC</sub> and V<sub>EE</sub> pins. To minimize parasitic inductance, keep PC traces short and use surface-mount components.

Input termination resistors and output back-termination resistors, if used, should be surface-mount types, and should be placed as close to the IC pins as possible.

### DC and Noise Errors

The MAX4104/MAX4105/MAX4304/MAX4305 output offset voltage, V<sub>OUT</sub> (Figure 1), can be calculated with the following equation:

$$V_{\text{OUT}} = [V_{\text{OS}} + (I_{B+} \times R_S) + (I_{B-} \times (R_F \parallel R_G))] [1 + R_F / R_G]$$

where:

V<sub>OS</sub> = input offset voltage (in volts)

1 + R<sub>F</sub>/R<sub>G</sub> = amplifier closed-loop gain (dimensionless)

I<sub>B+</sub> = noninverting input bias current (in amps)

I<sub>B-</sub> = inverting input bias current (in amps)

R<sub>G</sub> = gain-setting resistor (in ohms)

R<sub>F</sub> = feedback resistor (in ohms)

R<sub>S</sub> = source resistor at noninverting input (in ohms)

The following equation represents output noise density:

$$e_{n(\text{OUT})} = \left[ 1 + \frac{R_F}{R_G} \right] \sqrt{\left( i_n \times R_S \right)^2 + \left[ i_n \times (R_F \parallel R_G) \right]^2 + e_n^2}$$

## 740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5

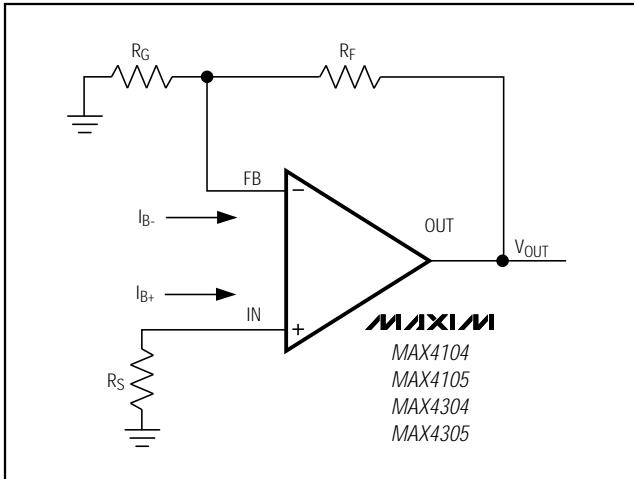



Figure 1. Output Offset Voltage

where:

$i_n$  = input current noise density (in  $\text{pA}/\sqrt{\text{Hz}}$ )

$e_n$  = input voltage noise density (in  $\text{nV}/\sqrt{\text{Hz}}$ )

The MAX4104/MAX4105/MAX4304/MAX4305 have a very low,  $2.1\text{nV}/\sqrt{\text{Hz}}$  input voltage noise density and  $3.1\text{pA}/\sqrt{\text{Hz}}$  input current noise density.

An example of DC-error calculations, using the MAX4304 typical data and the typical operating circuit with  $R_F = RG = 330\Omega$  ( $R_F \parallel RG = 165\Omega$ ) and  $RS = 50\Omega$  gives:

$$V_{\text{OUT}} = \left[ \left( 32 \times 10^{-6} \right) (50) + \left( 32 \times 10^{-6} \right) (165\Omega) + 1 \times 10^{-3} \right] [1 + 1]$$

$$V_{\text{OUT}} = 15.8\text{mV}$$

Calculating total output noise in a similar manner yields the following:

$$e_n(\text{OUT}) =$$

$$[1+1] \sqrt{\left( 3.1 \times 10^{-12} \times 50 \right)^2 + \left( 3.1 \times 10^{-12} \times 165 \right)^2 + \left( 2.1 \times 10^{-9} \right)^2}$$

$$e_n(\text{OUT}) = 4.3\text{nV}/\sqrt{\text{Hz}}$$

With a 200MHz system bandwidth, this calculates to  $60.8\mu\text{VRMS}$  (approximately  $365\mu\text{Vp-p}$ , using the six-sigma calculation).

### ADC Input Buffers

Input buffer amplifiers can be a source of significant error in high-speed ADC applications. The input buffer is usually required to rapidly charge and discharge the ADC's input, which is often capacitive. In addition, the input impedance of a high-speed ADC often changes

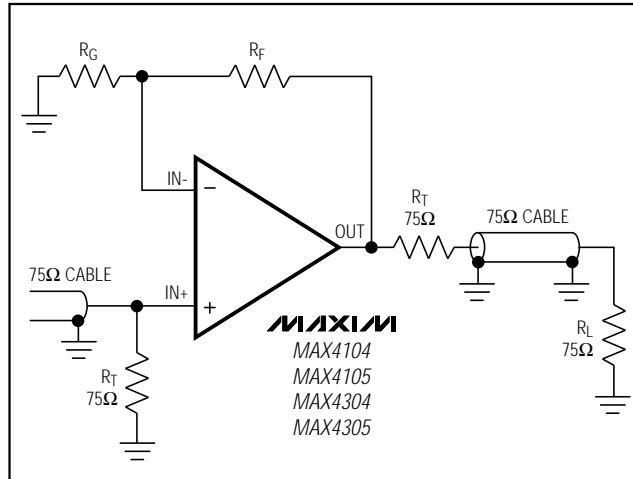



Figure 2. Video Line Driver

very rapidly during the conversion cycle—a condition that demands an amplifier with very low output impedance at high frequencies to maintain measurement accuracy. The combination of high-speed, fast slew rate, low noise, and low-distortion available in the MAX4104/MAX4105/MAX4304/MAX4305 makes them ideally suited for use as buffer amplifiers in high-speed ADC applications.

### Video Line Driver

The MAX4104/MAX4105/MAX4304/MAX4305 are optimized to drive coaxial transmission lines when the cable is terminated at both ends, as shown in Figure 2. To minimize reflections and maximize power transfer, select the termination resistors to match the characteristic impedance of the transmission line. Cable frequency response can cause variations in the flatness of the signal.

### Driving Capacitive Loads

The MAX4104/MAX4105/MAX4304/MAX4305 provide maximum AC performance when driving no output load capacitance. This is the case when driving a correctly terminated transmission line (i.e., a back-terminated cable).

In most amplifier circuits, driving a large load capacitance increases the chance of oscillations occurring. The amplifier's output impedance and the load capacitor combine to add a pole and excess phase to the loop response. If the pole's frequency is low enough and phase margin is degraded sufficiently, oscillations may result.

A second concern when driving capacitive loads originates from the amplifier's output impedance, which

## 740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5

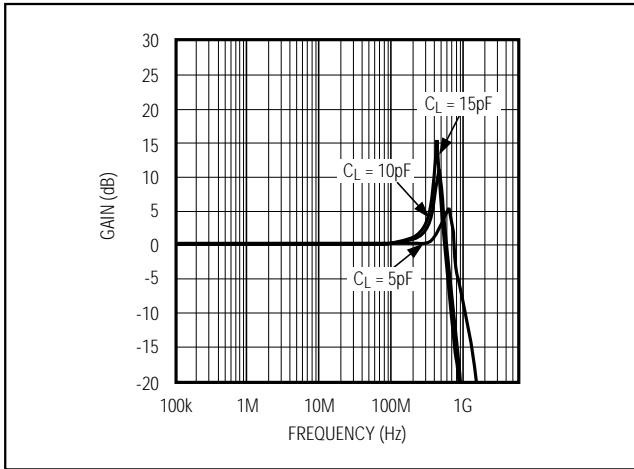



Figure 3a. MAX4104 Frequency Response with Capacitive Load and No Isolation Resistor

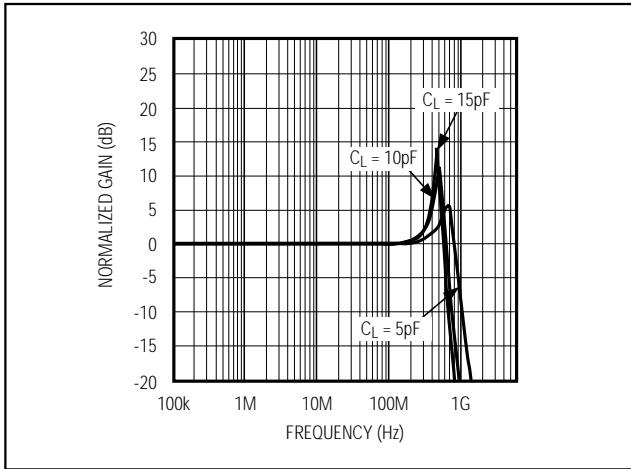



Figure 3b. MAX4304 Frequency Response with Capacitive Load and No Isolation Resistor

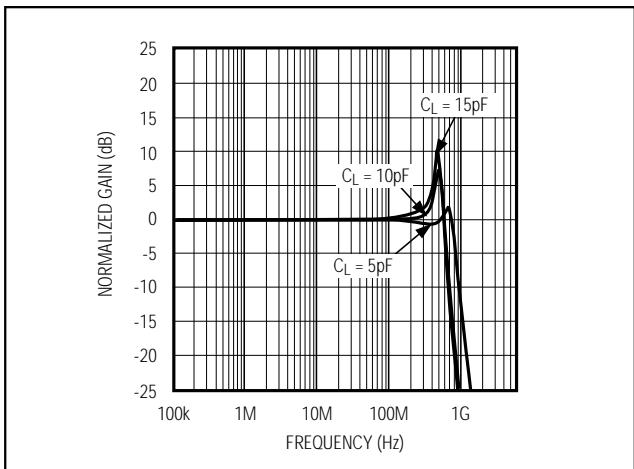



Figure 3c. MAX4105 Frequency Response with Capacitive Load and No Isolation Resistor

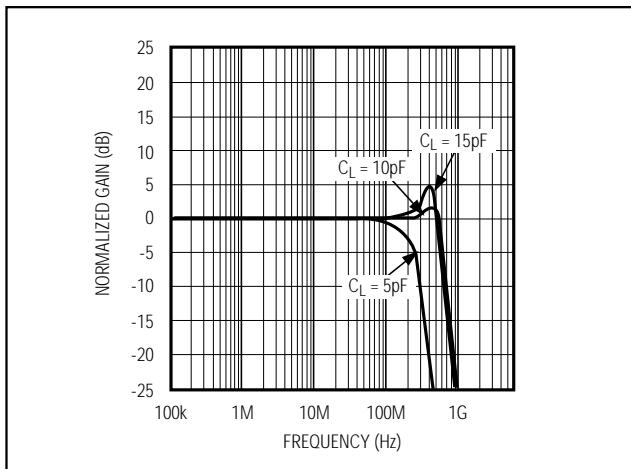



Figure 3d. MAX4305 Frequency Response with Capacitive Load and No Isolation Resistor

appears inductive at high frequencies. This inductance forms an L-C resonant circuit with the capacitive load, which causes peaking in the frequency response and degrades the amplifier's phase margin.

The MAX4104/MAX4105/MAX4304/MAX4305 drive capacitive loads up to 10pF without oscillation. However, some peaking may occur in the frequency domain (Figure 3). To drive larger capacitance loads or to reduce ringing, add an isolation resistor between the amplifier's output and the load (Figure 4).

The value of  $R_{ISO}$  depends on the circuit's gain and the capacitive load (Figure 5). Figure 6 shows the MAX4104/MAX4105/MAX4304/MAX4305 frequency response with the isolation resistor and a capacitive

load. With higher capacitive values, bandwidth is dominated by the RC network formed by  $R_{ISO}$  and  $C_L$ ; the bandwidth of the amplifier itself is much higher. Also note that the isolation resistor forms a divider that decreases the voltage delivered to the load.

**Maxim's High-Speed Evaluation Boards**  
The MAX4104 evaluation kit manual shows a suggested layout for Maxim's high-speed, single-amplifier evaluation boards. This board was developed using the techniques described previously (see *Layout and Power-Supply Bypassing* section). The smallest available surface-mount resistors were used for the feedback and back-termination resistors to minimize the

## 740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5

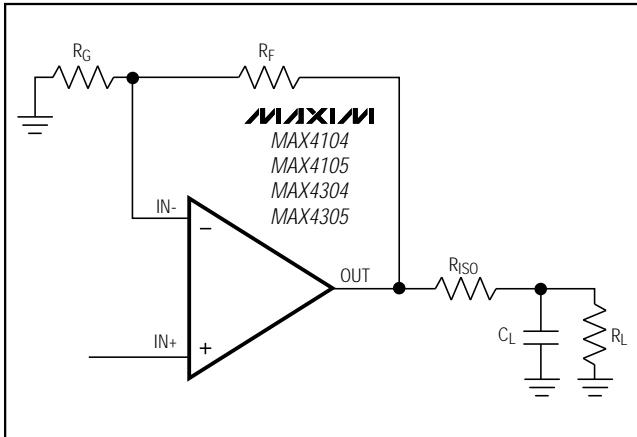



Figure 4. Using an Isolation Resistor ( $R_{ISO}$ ) for High Capacitive Loads

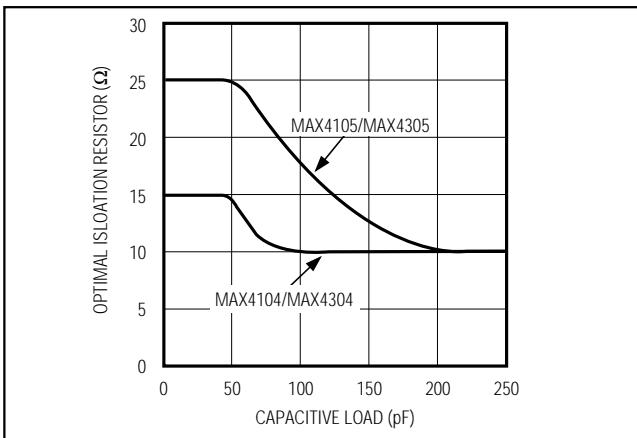



Figure 5. Optimal Isolation Resistor ( $R_{ISO}$ ) vs. Capacitive Load

### Pin Configurations (continued)

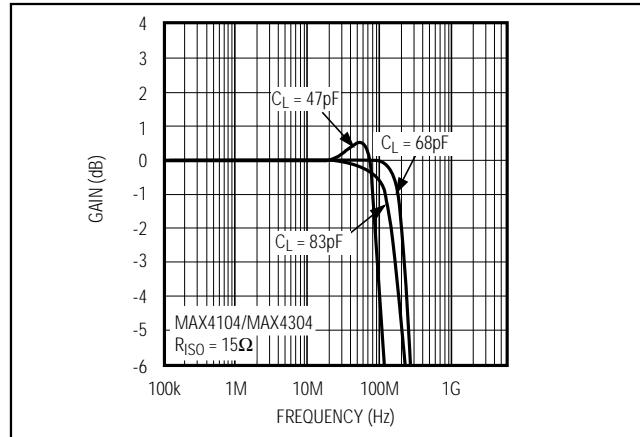
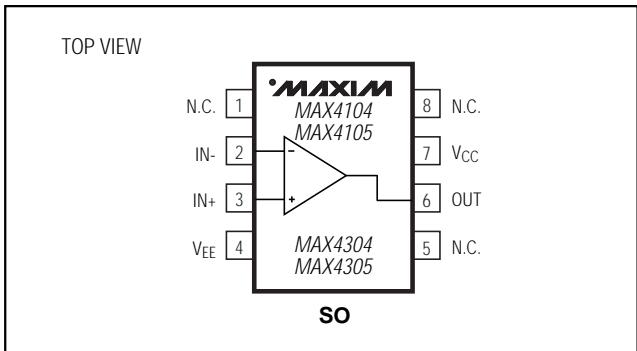




Figure 6. Frequency Responses vs. Capacitive Load with 15 $\Omega$  Isolation Resistor

distance from the IC to these resistors, thus reducing the capacitance associated with longer lead lengths.

SMA connectors were used for best high-frequency performance. Because distances are extremely short, performance is unaffected by the fact that inputs and outputs do not match a 50 $\Omega$  line. However, in applications that require lead lengths greater than 1/4 of the wavelength of the highest frequency of interest, constant-impedance traces should be used.

Fully assembled evaluation boards are available for the MAX4104 in an 8-pin SO package.

### Ordering Information (continued)

| PART               | TEMP. RANGE    | PIN-PACKAGE | SOT TOP MARK |
|--------------------|----------------|-------------|--------------|
| <b>MAX4105ESA</b>  | -40°C to +85°C | 8 SO        | —            |
| MAX4105EUK-T       | -40°C to +85°C | 5 SOT23-5   | ACCP         |
| <b>MAX4304ESA</b>  | -40°C to +85°C | 8 SO        | —            |
| MAX4304EUK-T       | -40°C to +85°C | 5 SOT23-5   | ACQ          |
| <b>MAX4305ESA*</b> | -40°C to +85°C | 8 SO        | —            |
| MAX4305EUK-T       | -40°C to +85°C | 5 SOT23-5   | ACCR         |

\*Future product—contact factory for availability.

### Chip Information

TRANSISTOR COUNT: 44

SUBSTRATE CONNECTED TO VEE

**Данный компонент на территории Российской Федерации****Вы можете приобрести в компании MosChip.**

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

**<http://moschip.ru/get-element>**

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибуторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ Р В 0015-002 и ЭС РД 009

**Офис по работе с юридическими лицами:**

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: [info@moschip.ru](mailto:info@moschip.ru)

Skype отдела продаж:

moschip.ru

moschip.ru\_4

moschip.ru\_6

moschip.ru\_9