TI-RTOS 2.12

User’s Guide

13 Texas

INSTRUMENTS

Literature Number: SPRUHDA4I
March 2015

I3 TEXAS

INSTRUMENTS
Contents
PrEfaC e . . .o e e e e 7
1 ADOUL T RTOS . . 8
1.1 Whatis TI-RTOS? .ot e e e e e e e 8
1.2 What are the TI-RTOS COmMPONENtS 2.ttt e e e e e 9
1.3 SYS/BIOS — The TI-RTOS Kernel. e e e e e e e 10
1.4 UIA—TI-RTOS INSrumentationt et 10
15 NDK—TI-RTOS NetWOIKING o ottt e e e e e 11
1.6 IPC — TI-RTOS Interprocessor Communicationttt 11
1.7 FatFS Module in SYS/BIOS — TI-RTOS File Systemot e 12
1.8 TI-RTOS Drivers and Board Initialization e 12
L8 L DIIVEIS . o vttt e e e e 12
1.8.2 MWare 12
1.8.3 MSPWare. 13
1.8.4 TIVAWAIEo 13
1.8,5 C26xxWare and the CC3200 Driverlib. 14
1.9 TI-RTOS NetWOrk SErviCeS. . . . ottt e e e e 14
110 XDCHOOIS. . o . vttt ettt e e 14
2 Instrumentation with TI-RTOS 15
2.1 OVEIVIBW . .« ottt 15
2.2 Adding Logging to @ Projectttt e e 16
2.3 Modifying an Example to Upload Logging Dataat Runtime vvuu... 18
2.3.1 Project Changes. . ..o v e e 18
2.3.2 Code Changes . ..ttt e 20
2.3.3 Configuration Changes e 21
2.4 UsiNg LOg EVENIS . ..o o e e 23
241 Adding Log Events to your COOeo vttt e 23
2.4.2 Using Instrumented or Non-Instrumented Libraries. 23
25 Viewing the LOgSo e 24
2.5.1 Using RTOS Analyzer and System Analyzer. 24
2.5.2 Viewing Log Records in ROV e e 25
3 Debugging TI-RTOS Applications e e e e e e 26
3.1 Using CCS Debugging TooISttt e e e e e 26
3.1.1 Stepping Through TI-RTOS Codeottt e e e 28
3.2 Generating printf QUIPUL oo e e 29
3.21 Output with printf()o e e 29
3.2.2 Output with System_printf() e 29
3.3 Controlling Software Versions for Use with TI-RTOS i e 32
3.4 Understanding the Build FIow. e e 33
4 Board-SpecCific Files 34
A OVBIVIBW. .« vttt ittt e e e 34
4.2 Board-SpecificCode Files e 35
SPRUHD4l—March 2015 Contents 2

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I

I§ TEXAS
INSTRUMENTS
www.ti.com Contents
4.3 Linker Command Files 35
4.4 Target Configuration Files 36
B T RTOS DIiVEIS . ottt e e e e e 37
B.L OVBIVIBW . .« o ot 38
5.2 Driver FrameworK 39
5.2.1 Static Configuration e 39
5.2.2 Driver Object Declarations.ttt e 40
5.2.3 Dynamic Configuration and Common APIS i 43
5.2.4 TI-RTOS Driver Implementations for ConcertoDevices, 43
5.2.5 TI-RTOS Driver Implementations for TivaC Devices. i, 44
5.2.6 TI-RTOS Driver Implementations for CC26xx Devices, 44
5.2.7 TI-RTOS Driver Implementations for CC3200 Devices, 45
5.2.8 TI-RTOS Driver Hwis for MSP43X DEVICESottt i it et et e 46
5.3 CamEra DIIVEL ..t e e 49
5.3.1 Static Configuration e e 49
5.3.2 Runtime Configuration. e 49
5.3.3 Camera MOOeS i 49
B 814 APIS . 50
5.3 5 EXAMPIES. . .o e e 50
5.4 EMAC DIV . .ttt e e e e 51
5.4.1 Static Configuration e e e 51
5.4.2 Runtime Configuration. e e 51
B4, 3 APIS . e 51
D44 USAQE. . . ottt 51
5.4.5 INStrumMeNntation e 52
.46 EXAMPIES. . .o e e 52
B 5 GPIO DIV e e 53
5.5.1 Static Configuration e e e 53
5.5.2 Runtime Configuration. e 55
B 5.3 APIS . L 55
5. 5.4 USAQE. . . it 55
5.5.5 INStrUmMeENtationttt e e e 56
5. 5.6 EXAMPIES. . .o e e e 56
BB 2 DIIVEI . oot e e 57
5.6.1 Static Configuration e e 57
5.6.2 Runtime Configuration. e 57
B.B.3 APIS . e 57
.64 USAQE. . . ottt e 58
56,5 I2C MOOES . . oottt e e e 59
5.6.6 12C TransacCtions v ittt e e e 60
5.6.7 INStrumeNntation 63
5.6.8 EXAMPIES. . .o e e 63
B 712G DIIVEY . o 64
5.7.1 Static Configuration e 64
5.7.2 Runtime Configuration. e 64
B.7.3 128 MOUES . .ot e e 65
D 7 A APIS . 65
D 7. S EXAMPIES . . o e e 67
5.8 PWM DIVl . .o 68
SPRUHD4|—March 2015 Contents 3

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

I§ TEXAS

INSTRUMENTS

Contents www.ti.com
5.8.1 Static Configuration 68

5.8.2 Runtime Configuration. e 68

5.8 3 APIS . L 68

D84 USAQE. . . .t 69

5.85 PWM MOUES . ..ttt e e 69

5.8.6 INStrUMENtatioN ot e 70

D87 EXAMPIES . . .o e e 70

5.9 OSSPl DIIVEI . .o 71
5.9.1 Static Configuration e e 71

5.9.2 Runtime Configuration. e 71

50,3 APIS . 72

5.0 4 USAQE. . .ttt 72

5.9.5 INStrumentation e 72

5.9.6 EXAMpPIES. . .o e e 72

B.L0 SPI D VI . o e 73
5.10.1 Static Configuration e e 73
5.10.2 Runtime Configuration. e e e 73
B.10.3 APIS . o 73
5104 USAQE. - - i ittt 74
5.10.5 Callback and BIocking MOOESottt e 75
5.10.6 SPITranSacCtioNnso ottt e e e e 76
5.10.7 Master/Slave MOdEeS 77
5.10.8 INStrumMeENtationttt e 78
5.10.9 EXamMpIeS. . .o e e e 78

5.11 SPIMessageQTransportottt 79
5.11.1 Static Configuration e e 79
5.11.2 Runtime Configuration. e e e 79
5.11.3 Error ConditioNnS. . . . oottt 79
B5.11.4 EXamMpPIeS. . .o e e 80

5,12 UART DIIVEI . ot e e e e e e e e e 81
5.12.1 Static Configuration e e 81
5.12.2 Runtime Configuration. e e 81

B 12.3 APIS . o 81
D124 USAQE. . . o ittt e 82
5.12.5 UART DMA Driver for TivaC DeVICESottt 83
5.12.6 UART DMA Driver for SimpleLink CC32xx Devices, 84
5.12.7 INStrumentationttt e 84
B5.12.8 EXAMPIES . . .o e e 85

5.13 USBMSCHFAtFS DIIVEr . . . o 86
5.13.1 Static Configuration e e 86
5.13.2 Runtime Configuration. e e 86
D13 3 APIS . 86
5134 USAQE. . . ottt 87
5.13.5 INStrumMeNntationttt e 88
513,68 EXAMPIES . . oo e e 88

5.14 USB Reference Modules 89
5.14.1 USB Reference Modules in TI-RTOS e 90
5.14.2 USB Reference Module Design Guidelines. 91

5.15 USB Device and HOSt MOdUIES. i e e e 92
4 Contents SPRUHD4|—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

I§ TEXAS
INSTRUMENTS
www.ti.com Contents
5.16 WatChdog DriVer. . .. oo e e 94
5.16.1 Static Configuration e 94
5.16.2 Runtime Configuration. e 94
B.1B.3 APIS . 94
.16, 4 USAQE. . . i ittt 95
5.16.5 INStrumentationttt e e e 95
5.16.6 EXAmMpPIeS . . .o e e 96
B.17 WIRI DIV . o 96
5.17.1 Static Configuration e e 97
5.17.2 Runtime Configuration. e e e 98
B 17,3 APIS . o 98
D74 USAQE. . . ottt 99
5.17.5 INStrumentation 99
17,6 EXAMPIES . . oo e e 99
6 TI-RTOS NetWOrk ServiCes e 100
B.1 OVEIVIBW . . o ottt 100
6.2 HTTP Clent . .. e e 100
6.3 Static Configuration e 101
8.4 APIS L 101
6.5 EXAMPIES . .o e e 101
7 TIRTOS UtIlties ..o e e e e 102
T L OV BW. o ot i e e e e 102
7.2 UARTMoON ModUIE e e e e e 102
7.21 UARTMoN With CCS TOO0IS . ..ottt e e e e e e 104
T7.2.2 GUI COMPOSET. . . ottt e e ettt e ettt 108
7.3 UART Example Implementation e e e 108
8 Using the FatFs File System Drivers e e e e e 109
8.1 OVEIVIBW . . o ot 109
8.2 FatFs, SYS/BIOS, and TI-RTOS.o e 110
8.3 Using FatFs 111
8.3.1 Static FatFS Module Configuration 111
8.3.2 Defining Drive NUMDbDEIS. e e 112
8.3.3 Preparing FatFs DriVerS.ot e 112
8.3.4 Opening FilesUsing FatFs APIS e e e 113
8.3.5 Opening FilesUsiNg C I/O APIS. . . .o e e 113
8.4 Cautionary NOTES o e e 113
9 Rebuilding TI-RTOS 114
9.1 Rebuillding TI-RTOS 115
9.1.1 Building TI-RTOS for CCS. e e 115
9.1.2 Building TI-RTOS for AR, e e e e 116
9.1.3 Building TI-RTOS for GCC. i e e e e e e e 116
9.1.4 Rebuilding the TI-RTOS Drivers with the Debug Profile 117
9.2 Rebuilding MSPWare's driverlib for TI-RTOS and Its Drivers. 117
9.3 Rebuilding Individual Componentst e 118
10 Memory Usage With TI-RTOS e e e e e e e e 119
10.1 Memory Footprint REAUCLION.o o e e 119
10.2 Networking Stack Memory Usage.ottt e e 131
SPRUHD4|—March 2015 Contents 5

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS
Contents www.ti.com
A REVISION HiStOrY . .o e e 132
o =G 135
6 Contents SPRUHD4|—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

I3 TEXAS
Preface
INSTRUMENTS SPRUHD4I—March 2015

Read This First

About This Manual
This manual describes TI-RTOS and contains information related to all supported device families. The
version number as of the publication of this manual is v2.12.

Notational Conventions
This document uses the following conventions:

® Program listings, program examples, and interactive displays are shown in a special typeface.
Examples use a bold version of the special typeface for emphasis.

Here is a sample program listing:

#include <xdc/runtime/System.h>

int main(void) {
System printf ("Hello World!\n");
return (0) ;

}

® Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you
specify the information within the brackets. Unless the square brackets are in a bold typeface, do not
enter the brackets themselves.

Trademarks

Registered trademarks of Texas Instruments include Stellaris, and StellarisWare.

Trademarks of Texas Instruments include: the Texas Instruments logo, Texas Instruments, Tl, TI.COM,
BoosterPack, C2000, C5000, C6000, Code Composer, Code Composer Studio, Concerto, controlSUITE,
DSP/BIOS, E2E, MSP430, MSP430Ware, MSP432, OMAP, SimpleLink, SPOX, Sitara, TI-RTOS, Tiva,
TivaWare, TMS320, TMS320C5000, TMS320C6000, and TMS320C2000.

ARM is a registered trademark, and Cortex is a trademark of ARM Limited.

Windows is a registered trademark of Microsoft Corporation.

Linux is a registered trademark of Linus Torvalds.

IAR Systems and IAR Embedded Workbench are registered trademarks of IAR Systems AB:

All other brand or product names are trademarks or registered trademarks of their respective companies
or organizations.

March 24, 2015

SPRUHD4|—March 2015 Read This First 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I

I$ TEXAS Chapter 1

INSTRUMENTS

SPRUHD4l—March 2015

About TI-RTOS

This chapter provides an overview of TI-RTOS.

Topic Page
1.1 Whatis TIFRTOS? ...t e 8
1.2 What are the TI-RTOS Components?0 ... 9
1.3 SYS/BIOS — The TI-RTOSKernel 10
1.4 UIA —TI-RTOS Instrumentationccooo. .. 10
1.5 NDK —TI-RTOS Networking, 11
1.6 IPC—TI-RTOS Interprocessor Communication 11
1.7 FatFS Module in SYS/BIOS — TI-RTOS File System 12
1.8 TI-RTOS Drivers and Board Initialization 12
1.9 TI-RTOS Network Services. 14
1.10 XDCHOOIS .ottt 14

1.1 Whatis TI-RTOS?

TI-RTOS is a scalable, one-stop embedded tools ecosystem for Tl devices. It
scales from a real-time multitasking kernel (SYS/BIOS) to a complete RTOS
solution including additional middleware components and device drivers. By
providing essential system software components that are pre-tested and

preintegrated, TI-RTOS enables you to focus on differentiating your application.

If you use Code Composer Studio (CCS), you can install TI-RTOS in the CCS
App Center. There are several different versions of TI-RTOS to support
different device families, including TI-RTOS for MSP43x, TI-RTOS for TivaC,
and TI-RTOS for C2000. You can also use TI-RTOS outside of CCS, including
with IAR Embedded Workbench and GNU compilers.

For information about installing TI-RTOS and creating and configuring examples that use TI-RTOS, see

the TI-RTOS Getting Started Guide for your device family:

® TI-RTOS for C2000 Getting Started Guide -- SPRUHU3

® TI-RTOS for MSP43x Getting Started Guide -- SPRUHU4
® TI-RTOS for TivaC Getting Started Guide -- SPRUHUS5

TI-RTOS for SimpleLink™ Wireless MCUs Getting Started Guide -- SPRUHUS8

SPRUHD4l—March 2015 About TI-RTOS 8
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com/lit/pdf/spruhu3
http://www.ti.com/lit/pdf/spruhu4
http://www.ti.com/lit/pdf/spruhu5
http://www.ti.com/lit/pdf/spruhu8

13 TEXAS
INSTRUMENTS

www.ti.com What are the TI-RTOS Components?

1.2 What are the TI-RTOS Components?

TI-RTOS contains its own source files, pre-compiled libraries (both instrumented and non-instrumented),
and examples. Additionally, TI-RTOS contains a number of components within its "products"
subdirectory. The components of TI-RTOS are as follows. Some components are not available for all
device families.

Table 1-1. TI-RTOS Components

TI-RTOS Component Name PDF Documentation Location
TI-RTOS TI-RTOS examples Chapter 3 of the TI-RTOS Getting Started Guide for your
device
TI-RTOS Kernel SYS/BIOS SYS/BIOS (TI-RTOS Kernel) User’s Guide -- SPRUEX3
TI-RTOS Instrumentation UIA System Analyzer User’s Guide -- SPRUH43
TI-RTOS Networking NDK TI Network Developer's Kit (NDK) Guide -- SPRU523
TI Network Developer's Kit (NDK) API Reference -- SPRU524
TI-RTOS Interprocessor IPC IPC User’s Guide on Texas Instruments Wiki
Communication
TI-RTOS File System FatFS Chapter 8 of this User’s Guide
TI-RTOS USB USB stack Section 5.14 and Section 5.15 of this User’s Guide
TI-RTOS Drivers and Drivers and TivaWare, Section 1.8 and Chapter 5 of this User’s Guide
Board Initialization MSPWare, Mware,

CC26xxWare, or the
CC3200 SDK's driverlib

TI-RTOS Network Services Network Services Section 1.9 and Chapter 6 of this User’s Guide

® TI-RTOS Kernel — SYS/BIOS. SYS/BIOS is a scalable real-time kernel. It is designed to be used
by applications that require real-time scheduling and synchronization or real-time instrumentation. It
provides preemptive multi-threading, hardware abstraction, real-time analysis, and configuration
tools. SYS/BIOS is designed to minimize memory and CPU requirements on the target.

® TI-RTOS Instrumentation — UIA. The Unified Instrumentation Architecture (UIA) provides target
content that aids in the creation and gathering of instrumentation data (for example, Log data).

® TI-RTOS Networking — NDK. The Network Developer's Kit (NDK) is a platform for development
and demonstration of network enabled applications on TI embedded processors.

® TI-RTOS Interprocessor Communication — IPC. IPC contains packages that are designed to
allow communication between processors in a multi-processor environment and communication to
peripherals. This communication includes message passing, streams, and linked lists. These work
transparently in both uni-processor and multi-processor configurations.

® MSPWare, MWare, TivaWare, CC26xxWare, and the CC3200 SDK's driverlib. These provide
software designed to simplify and speed development of applications on the corresponding device
family. These components are rebuilt to include only the portions required by TI-RTOS

® XDCtools. This core component provides the underlying tooling for configuring and building TI-
RTOS and its components. XDCtools is installed as part of CCS v6.x. If you install TI-RTOS outside
CCS, a compatible version of XDCtools is installed automatically.

SPRUHD4l—March 2015 About TI-RTOS 9
Submit Documentation Feedback

http://www.ti.com/lit/pdf/spruex3
http://www.ti.com/lit/pdf/spruh43
http://www.ti.com/lit/pdf/spru523
http://www.ti.com/lit/pdf/spru524
http://processors.wiki.ti.com/index.php/TI-RTOS
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS

INSTRUMENTS
SYS/BIOS — The TI-RTOS Kernel www.ti.com
1.3 SYS/BIOS — The TI-RTOS Kernel
SYS/BIOS is an advanced real-time operating system from Texas Instruments for use in a wide range of
DSPs, microprocessors, and microcontrollers. It is designed for use in embedded applications that need
real-time scheduling, synchronization, and instrumentation. SYS/BIOS is designed to minimize memory
and CPU requirements on the target. SYS/BIOS provides a wide range of services, such as:
® Preemptive, deterministic multi-threading
® Hardware abstraction
® Memory management
® Configuration tools
® Real-time analysis
For more information about SYS/BIOS, see the following:
SYS/BIOS User’s Guide (SPRUEX3)
SYS/BIOS API and configuration reference. In Tl Resource Explorer (in CCS), choose the
Documentation Links item for your version of TI-RTOS. In the Documentation Links page, choose
the TI-RTOS Kernel Runtime APIs and Configuration (cdoc) item.
SYS/BIOS on Texas Instruments Wiki
TI-RTOS forum on TI's E2E Community
1.4 UIA —TI-RTOS Instrumentation
The Unified Instrumentation Architecture (UIA) provides target content that aids in the creation and
gathering of instrumentation data (for example, Log data).
The System Analyzer tool suite, which is part of CCS, provides a consistent and portable way to
instrument software. It includes the views that can be opened from the Tools > RTOS Analyzer and
Tools > System Analyzer menus in CCS. It enables software to be re-used with a variety of silicon
devices, software applications, and product contexts. It works together with UIA to provide visibility into
the real-time performance and behavior of software running on TI's embedded single-core and multicore
devices.
For more information about UIA and System Analyzer, see the following:
System Analyzer User’s Guide (SPRUH43)
UIA API and configuration reference. In Tl Resource Explorer (in CCS), choose the
Documentation Links item for your version of TI-RTOS. In the Documentation Links page, choose
the TI-RTOS Instrumentation Runtime APIs and Configuration (cdoc) item.
System Analyzer on Texas Instruments Wiki
10 About TI-RTOS SPRUHD4I—March 2015

Submit Documentation Feedback

http://www.ti.com/lit/pdf/spruex3
http://processors.wiki.ti.com/index.php/Category:SYSBIOS
http://e2e.ti.com/support/embedded/f/355.aspx
http://www.ti.com/lit/pdf/spruh43
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

1,

TeExAs

INSTRUMENTS

www.ti.com NDK — TI-RTOS Networking

15

1.6

NDK — TI-RTOS Networking

The Network Developer's Kit (NDK) is a platform for development and demonstration of network enabled
applications on Tl embedded processors, currently limited to the TMS320C6000 family and ARM
processors. The NDK stack serves as a rapid prototyping platform for the development of network and
packet processing applications. It can be used to add network connectivity to existing applications for
communications, configuration, and control. Using the components provided in the NDK, developers can
quickly move from development concepts to working implementations attached to the network.

The NDK is a networking stack that operates on top of SYS/BIOS.

For more information about NDK, see the following:
NDK User’s Guide (SPRU523)
NDK Programmer’s Reference Guide (SPRU524)

NDK API reference.
Run <tirtos_install>/products/ndk_# ## ## ##/docs/doxygen/html/index.html.

NDK configuration reference. In Tl Resource Explorer (in CCS), choose the Documentation
Links item for your version of TI-RTOS. In the Documentation Links page, choose the TI-RTOS
Networking Configuration (cdoc) item.

NDK on Texas Instruments Wiki

TI-RTOS forum on TI's E2E Community

IPC — TI-RTOS Interprocessor Communication

IPC is a component containing packages that are designed to allow communication between processors
in a multi-processor environment and communication between threads and peripherals in a uni-
processor and multi-processor environment. This communication includes message passing, streams,
and linked lists. These work transparently in both uni-processor and multi-processor configurations.

The ti.sdo.ipc package contains modules and interfaces for interprocessor communication. The
ti.sdo.utils package contains utility modules for supporting the ti.sdo.ipc modules and other modules.

IPC is designed for use on processors running SYS/BIOS applications. IPC can be used to communicate
with the following:

® Other threads on the same processor
® Threads on other processors running SYS/BIOS
® Threads on general purpose processors (GPP) running SysLink
For more information about IPC, see the following:
IPC User’s Guide (SPRUGO6)
IPC API reference. Run <tirtos_install>/products/ipc_#_## ## ##/docs/doxygen/index.html.

IPC configuration reference. In Tl Resource Explorer (in CCS), choose the Documentation Links
item for your version of TI-RTOS. In the Documentation Links page, choose the TI-RTOS IPC
Configuration (cdoc) item.

SPRUHD4l—March 2015 About TI-RTOS 11
Submit Documentation Feedback

http://www.ti.com/lit/pdf/spru523
http://www.ti.com/lit/pdf/spru524
http://processors.wiki.ti.com/index.php/Category:NDK
http://e2e.ti.com/support/embedded/f/355.aspx
http://www.ti.com/lit/pdf/sprugo6
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

FatFS Module in SYS/BIOS — TI-RTOS File System www.ti.com

1.7

1.8

181

1.8.2

FatFS Module in SYS/BIOS — TI-RTOS File System

FatFS is an open-source FAT file system module intended for use in embedded systems. The API used
by your applications is generic to all FatFS implementations, and is described and documented at
http://elm-chan.org/fsw/ff/00index_e.html. In order to use FatFS in TI-RTOS applications, you must
configure the module for use with the SYS/BIOS ti.sysbios.fatfs.FatFS module.

For more information about FatFS, see the following:
Chapter 8, "Using the FatFs File System Drivers"
FatFS for SYS/BIOS wiki page

SYS/BIOS API and configuration reference. In Tl Resource Explorer (in CCS), choose the
Documentation Links item for your version of TI-RTOS. In the Documentation Links page, choose
the TI-RTOS Kernel Runtime APIs and Configuration (cdoc) item and see help under the
ti.sysbios.fatfs.FatFS module topic.

TI-RTOS Drivers and Board Initialization

TI-RTOS provides drivers for device families for which a *Ware package is supported by TI-RTOS. This
*Ware packages include TivaWare, MSPWare, MWare, CC26xxWare, and the CC3200SDK Driverlib.
The *Ware libraries distributed with TI-RTOS have been reduced in size to include only the necessary
portions of the libraries.

Drivers

TI-RTOS includes drivers for a number of peripherals. See Chapter 5 for a list of the specific drivers and
details about each one.

The drivers are in the <tirtos installs/packages/ti/drivers directory. TI-RTOS examples are
provided to show how to use these drivers.

Note that all of these drivers are built on top of MWare, MSPWare, and TivaWare. These drivers provide
the following advantages over those provided by MWare, MSPWare, and TivaWare:

® The TI-RTOS drivers are thread-safe for use with SYS/BIOS threads.

® The TI-RTOS drivers are provided in both instrumented and non-instrumented versions. The
instrumented versions support logging and asserts.

® The TI-RTOS drivers provide support for the RTOS Object View (ROV) tool in CCS.

MWare

MWare is the M3 portion of controlSUITE, a software package that provides support for F28M3x
(Concerto) devices. It includes low-level drivers and examples.

® The version of MWare provided with TI-RTOS differs from the version in controlSUITE in that it has
been rebuilt. See the TI-RTOS.README file in the <tirtos installs\products\MWare vi#i#i#a
directory for more specific details. To indicate that the version has been modified, the name of the
MWare folder has an added letter (beginning with "a" and to be incremented in subsequent versions).
For example <tirtos installs\products\MWare v110a.

12

About TI-RTOS SPRUHD4|—March 2015
Submit Documentation Feedback

http://processors.wiki.ti.com/index.php/FatFS_for_SYS/BIOS
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

1,

TeEXAs
INSTRUMENTS

www.ti.com TI-RTOS Drivers and Board Initialization

Note that the MWare drivers are not thread-safe. You can use synchronization mechanisms provided by
SYS/BIOS to protect multiple threads that access the same MWare APIs.

For more information about MWare and controlSUITE, see the following:
Documents in <tirtos_install>/products/MWare_##/docs
controlSUITE on Texas Instruments Wiki

controlSUITE Product Folder

1.8.3 MSPWare
MSPWare is an extensive suite of drivers, code examples, and design resources designed to simplify
and speed development of MSP430 and MSP432 microcontroller applications. Currently, TI-RTOS uses
MSPWare to support MSP430F5xx, MSP430F6xx, and MSP432 devices. TI-RTOS utilizes MSPWare's
driverlib, usblib430, and grlib components.
® The version of MSPWare provided with TI-RTOS differs from the full version in several ways. See
the TI-RTOS.README file inthe <tirtos install>\products\MSPWare 1 ## ## ##a directory
for more specific details. To indicate that the version has been modified, the name of the MSPWare
folder has an added letter (beginning with "a" and to be incremented in subsequent versions). For
example <tirtos installs\products\MSPWare 1 80 01 03a.
Note that the MSPWare drivers are not thread-safe. You can use synchronization mechanisms provided
by SYS/BIOS to protect multiple threads that access the same MSPWare APIs.
For more information about MSPWare, see the following:
Documents in <tirtos_install>/products/MSPWare_# ## ## ##aldoc
Documents in <tirtos_install>/products/MSPWare_# ## ## ##aldriverlib/doc
Documents in <tirtos_install>/products/MSPWare_# ## ## ##alusblib430/
MSP430_USB_ Software/Documentation
MSPWare Product Folder
1.8.4 TivaWare
This software is an extensive suite of software designed to simplify and speed development of Tiva-
based (ARM Cortex-M) microcontroller applications. (TivaWare was previously called StellarisWare.)
The version of TivaWare provided with TI-RTOS differs from the standard release in that it has been
rebuilt. See the TI-RTOS.README file in the <tirtos installs\products\TivaWare C Series-1.#
directory for more specific detalils.
Note that the TivaWare drivers are not thread-safe. You can use synchronization mechanisms provided
by SYS/BIOS to protect multiple threads that access the same TivaWare APIs.
For more information about TivaWare, see the following:
Documents in <tirtos_install>/products/TivaWare_####/docs
TivaWare Product Folder
Online StellarisWare Workshop
SPRUHD4I—March 2015 About TI-RTOS 13

Submit Documentation Feedback

http://processors.wiki.ti.com/index.php/ControlSUITE_for_C2000
http://www.ti.com/tool/controlsuite
http://www.ti.com/tool/msp430ware
http://www.ti.com/lsds/ti/microcontroller/tiva_arm_cortex/c_series/tm4c_arm_cortex-m4/tools_software.page
http://processors.wiki.ti.com/index.php/Getting_Started_with_StellarisWare_Workshop
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

TI-RTOS Network Services www.ti.com

1.85

1.9

1.10

C26xxWare and the CC3200 Driverlib

The CC3200 Driverlib provides driver source code and libraries for SimpleLink Wireless MCUs. This
Driverlib is a subset of the CC3200 SDK. It provides register-level access to CC3200 peripherals. The
version of the Driverlib provided with TI-RTOS differs from the standard release in that it has been rebuilt
with an Operating System Abstraction Library (OSAL) for TI-RTOS.

CC26xxWare is a software suite that provides register-level access to CC26xx peripherals.

Note that these drivers are not thread-safe. You can use synchronization mechanisms provided by
SYS/BIOS to protect multiple threads that access the same CC3200 Driverlib and CC26xxWare APIs.
For more information, see the following:

SimpleLink WiFi Radio Tool

TI-RTOS Network Services

TI-RTOS includes high-level network stacks for communication such as HTTP. They are available in the
<tirtos_install>/packages/ti/net directory. TI-RTOS examples are provided to show how to use these
stacks.

For more information about Network Services, see Chapter 6.

XDCtools

XDCtools is a separate software component provided by Texas Instruments that provides the underlying
tooling needed for configuring and building SYS/BIOS, IPC, NDK, and UIA.

TI-RTOS installs XDCtools only if the version needed by TI-RTOS has not already been installed as part
of a CCS or SYS/BIOS installation. If TI-RTOS installs XDCtools, it places it in the top-level CCS directory
(for example, c:\ti), not the TI-RTOS products directory.

® XDCtools provides the XGCONF Configuration Editor and the scripting language used in the *.cfg
files. This is used to configure modules in a number of the components that make up TI-RTOS.

¢ XDCtools provides the tools used to build the configuration file. These tools are used automatically
by CCS if your project contains a *.cfg file. This build step generates source code files that are then
compiled and linked with your application code.

® XDCtools provides a number of modules and runtime APIs that TI-RTOS and its components
leverage for memory allocation, logging, system control, and more.

XDCtools is sometimes referred to as "RTSC" (pronounced "rit-see"—Real Time Software Components),
which is the name for the open-source project within the Eclipse.org ecosystem for providing reusable
software components (called "packages") for use in embedded systems. For more about how XDCtools
and SYS/BIOS are related, see the SYS/BIOS User’s Guide (SPRUEX3).

For more information about XDCtools, see the following:

XDCtools API and configuration reference. In Tl Resource Explorer (in CCS), choose the
Documentation Links item for your version of TI-RTOS. In the Documentation Links page, choose
the TI-RTOS Kernel Runtime APIs and Configuration (cdoc) item and see help for the xdc.runtime
modules.

RTSC-Pedia Wiki
TI-RTOS forum on TI's E2ZE Community

14

About TI-RTOS SPRUHD4|—March 2015
Submit Documentation Feedback

http://www.ti.com/tool/cc3xxxradiotest
http://www.ti.com/lit/pdf/spruex3
http://rtsc.eclipse.org/docs-tip
http://e2e.ti.com/support/embedded/f/355.aspx
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

I3 TEXAS
INSTRUMENTS Chapter 2

SPRUHD4l—March 2015

Instrumentation with TI-RTOS

This chapter describes how to instrument your application with log calls and view the data with System
Analyzer (SA).

Topic Page
2.1 OVEIVIEW .ottt e e 15
2.2 Adding LoggingtoaProject i, 16
2.3 Modifying an Example to Upload Logging Data at Runtime 18
24 Using Log Bvents 23
25 Viewingthe LogsS. o e 24

2.1 Overview

TI-RTOS uses the Unified Instrumentation Architecture (UIA) to instrument your application with log calls.
The data can be viewed and visualized with System Analyzer (SA) to create execution graphs, load
graphs and more. For detailed information on using UIA and SA refer to the Getting Started Guide in the
<tirtos_install>/products/uia_# ## ## ##/docs directory and the System Analyzer User’s Guide
(SPRUH43).

Note that System Analyzer includes the views that can be opened from both the Tools > RTOS Analyzer
and Tools > System Analyzer menus in CCS. That is, the RTOS Analyzer tools in CCS are part of
System Analyzer.

SPRUHD4|—March 2015 Instrumentation with TI-RTOS 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com/lit/pdf/spruh43
http://www.ti.com/lit/pdf/spruh43

13 TEXAS

INSTRUMENTS
Adding Logging to a Project www.ti.com
2.2 Adding Logging to a Project
To add SYS/BIOS logging to a project, follow these steps:
1. Double-click on the configuration file (.cfg) for your project to open it with the XGCONF Configuration
Editor.
2. If LoggingSetup is already listed in your Outline pane, skip to Step 5.
3. Inthe "Available Products" area, expand the list as shown here to find the LoggingSetup module in
the UIA product.
=% Available Products 52— O
type filter text
4 2% TI-RTOS
& TIRTOS
. %3 Drivers
- B System Providers
: Monitors
4 @ Products
. 443 SYSBIOS
- 338 NDK
4 33§ UIA
- 338 Loggers
- 333 Services
W) LoggingSetup
. 33§ XDCtools
. =% Other Products
4. Right-click on the LoggingSetup module, and select Use LoggingSetup. This adds the
LoggingSetup module to your project and opens the configuration page for the module.
16 Instrumentation with TI-RTOS SPRUHD4|—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

www.ti.com Adding Logging to a Project

5. Use the configuration page for the LoggingSetup module as follows:

a) In the Built-in Software Instrumentation area, use the check boxes to select what types of
threads you want to be logged for execution analysis, including tasks, software interrupts (Swi),
and hardware interrupts (Hwi). If you check the Run-time control of Event Logging box, you
can turn that type of logging on or off at runtime.

Add LoggingSetup to my configuration

+ Built-in Software Instrumentation

RTOS Execution Analysis More Info...

Task Context (Always on) [Swi Context [Hwi Context [] Semaphores
RTOS Load Analysis More Info...

CPU Load (Always on) [¥] Task Load [] Swi Load [Hwi Load
[Task Profiler Mare Info...

["] Context-Aware Function Profiler More Info...

+ User-written Software Instrumentation

Enable modules for use in instrumenting your application code. Please click on the provided tutorial links for informat

software.,

Errcr, Warning, Info and Print Events (e.g. Log_print2) Tuterial...
[] Duration Analysis (Benchmarking) Tutoral...
[Statistical Analysis (Counting and Graphing) Tutorial...

[] Snapshot Events (e.g. to log memory blocks, dynamic strings) Tutorial...

[¥] Run-time Control of Event Logging Tutorial...

+ Loggers

LoggingSetup generates any loggers required by the below setting automatically. If you wish to create and use differer
assign them manually. More infeo...

’ LoggerStopMode (JTAG ocnly) -

b) Also in the Built-in Software Instrumentation area, you can check boxes if you want the CPU
load to be logged for various types of activity.

c) Inthe User-written Software Instrumentation area, you can enable logging of any additional
instrumentation you have added with application code.

d) Inthe Loggers area, you configure the logger to use in your main application. Calls to Log_info(),
Log_warning(), and Log_error() in your main application as well as any instrumented driver logs
will be sent to this logger. By default, LoggingSetup creates a logger that sends events over
JTAG when the target is halted (that is, in Stop Mode).

The examples provided with TI-RTOS include and configure the LoggingSetup module. For more
information on using LoggingSetup refer to Section 5.3.1 in the System Analyzer User’s Guide
(SPRUH43).

SPRUHD4l—March 2015 Instrumentation with TI-RTOS 17
Submit Documentation Feedback

http://www.ti.com/lit/pdf/spruh43
http://www.ti.com/lit/pdf/spruh43
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS

INSTRUMENTS
Modifying an Example to Upload Logging Data at Runtime www.ti.com
2.3 Modifying an Example to Upload Logging Data at Runtime
The UART Console example uses UIA to upload logging data at runtime to RTOS Analyzer and System
Analyzer views in CCS. All other TI-RTOS examples, including UART Echo, use Stop Mode uploading
of such data. This section provides the steps to modify the UART Echo example to use the USB for the
same type of runtime data uploading performed by the UART Console example. These steps can be
adapted to other TI-RTOS examples.
In order to change from stop mode to runtime uploading, you need to make changes to the UART Echo
project, code, and configuration as described in the following pages.
2.3.1 Project Changes
Add the following two files to your UART Echo project:
¢ USBCDCD_Loggeridle.c
® USBCDCD_Loggerldle.h
These two files are included in the UART Console example. You can choose Project > Add Files in CCS
and copy them into your project from the <tirtos installs/packages/examples directory.
The UART Echo examples already include the appropriate USB library. This library is provided by
MWare, TivaWare, and MSPWare. If you are modifying an example other than UART Echo, add the
appropriate library from the following list to your project:
® <tirtos installs\products\MWare v20#a\MWare\usblib\ccs\Debug\usblib.lib
® <tirtos install>\products\TivaWare C_Series-2.#a\usblib\ccs\Debug\usblib.1lib
® <tirtos_installs\products\MSPWare_ 1 ## ## ##a\driverlib\ccs-MSP430F5529\ccs-
MSP430F5529.11b
To add a library to a CCS project, follow these steps:
1. Right-click on the project name in the Project Explorer pane of CCS and select Properties from the
context menu.
2. Expand the Build > Linker category and select the File Search Path category.
3. Click the + button over the Include library file or command file as input field.
4. Click File System in the Add file path dialog.
5. Browse to the location of the appropriate usblib library, and select the library file. Click Open.
6. Click OK in the Add file path dialog.
18 Instrumentation with TI-RTOS SPRUHD4|—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com

Modifying an Example to Upload Logging Data at Runtime

7. Click OK in the Properties dialog.

b e Properties for uartecho_TivaTM4C123GHGPM

ESNEEREX

|
| type filter text File Search Path Gro |
|- Resource |
General |
4 Build Configuration: | Debug [Active] "l [Manage Cunfigulatiom...] '
| [» ARM Compiler
4 ARM Linker
Basic Options Include library file or command file as input (--library, -} = w2 F !G| I@|
File Search Path "libe.a"
» Advanced Options "YCOM_TILRTSC TIRTOS_IMNSTALL_DIRY products/TivaWare_C_Series-2.0a/driverlib/ccs/Debug/driverlib.lib"
¥DCtool "SCOM_TI_RTSC_TIRTOS_INSTALL_DIR}products/TivaWare_C_Series-2.0a/usblib/ccs/Debug/ushlib.lib"
[ools
Debug
Add <dir> to library search path (--search_path, -i) = 5 = %-}| I@|
"$CG_TOOL_ROOTHIib"
"SICG_TOOL_ROOTYinclude”
eread libraries; resolve backward references (--reread_libs, -x
[¥] Reread librari Ive backward ref ; d_libs, -x)
earch libraries in priority order (--priority, -priori
[Search libraries in priority order (--priority, -priority)
< m | [7] Disable autematic RTS selection (--disable_auto_rts)
® Show advanced settings I OK I [Cancel
Instrumentation with TI-RTOS 19

SPRUHD4I—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

Modifying an Example to Upload Logging Data at Runtime www.ti.com

2.3.2

Code Changes

Open the uartecho.c file in CCS and add the following code:
® Include the USBCDCD_Loggerldle.h header file:

#include "USBCDCD LoggerIdle.h"

® Add the calls to Board_initUSB() and USBCDCD _init() to the main() function as shown in green
below:

{

Int main (Void)

Error Block eb;
Task Params taskParams;

/* Call board init functions. */
Board initGeneral () ;

Board initGPIO() ;

Board initUART() ;

Board initUSB (Board USBDEVICE) ;

System printf ("Starting the example\nSystem provider is set to SysMin,"
"halt the target and use ROV to view output.\n");

/* SysMin will only print to the console when you call flush or exit */

System flush() ;

/* Turn on user LED */
GPIO write(Board LED, Board LED ON) ;

/* Initialize the USB CDC device for logging transport */
USBCDCD _init () ;

/* Create the task */
Error init (&eb) ;
Task Params_init (&taskParams) ;
taskParams.instance->name = "echo";
echo = Task create(echoFxn, &taskParams, &eb);
if (echo == NULL) {
System printf ("Task was not created\n");
System_abort ("Aborting...\n");

/* Enable interrupts and start SYS/BIOS */
BIOS start();

return (0) ;

20

Instrumentation with TI-RTOS SPRUHD4l—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

www.ti.com Modifying an Example to Upload Logging Data at Runtime

2.3.3 Configuration Changes

You can modify the project’s configuration with the XGCONF Configuration Editor or with a text editor.
Here are the steps for both of these methods:

1. Using the XGCONF Configuration Editor, open the UART Echo project's uartecho.cfg file.
2. Select the LoggingSetup module in the Outline pane.

3. Inthe LoggingSetup configuration page, move to the Loggers section and change the logger type
to Loggerldle - Upload in Idle loop.

& “uartecho_mspd30fr3963.cfg 23 = O
» TI-RTOS ' Products * UIA *» LoggingSetup - UIA Logging Configuration
[¥] Run-time Control of Event Logging Tutorial...

* Loggers

Leggingsetup generates any loggers required by the below setting automatically, If you wish te create and use dif
assign them manually. Moreinfo...

Leggerldle - Upload in Idle loop -

Please note, for some of the transport types you may need to add additional modules to wour project (e.g. the ND

Pleasze click here to confiqure the Loggerldle module (e.q. the transportFxn parameter]

' 1} 3

TI-RTOS | LoggingSetup &2 | Properties cfg Script

4. Follow the Please click here to configure the Loggerldle module link.

SPRUHD4l—March 2015 Instrumentation with TI-RTOS 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

{J TEXAs
INSTRUMENTS

Modifying an Example to Upload Logging Data at Runtime www.ti.com

In the Logger Idle configuration page, check the Add the Loggerldle module to my configuration
box.

6. Setthe Buffer Size to 1024.
Set the Transport Function to USBCDCD_Loggerldle_sendData,

Set the Transport Type to TransportType_USB.

5.

& Fdemo.cfg &3
» | TI-RTOS * Products * UIA ! Loggers " Loggerldle - Module Settings <~ & @
A logger which routes "Log events to a users transport function,

This logger processes log events as they are generated, stores them in a buffer and during idle sends a section of the

buffer to the users transport function.

Add the Loggerldle module to my configuration

- Logging Options
Buffer Size 1024
Transport Function USBCDCD_Loggerldle_sendData

-

Transport Type TransportType_USEB

Custom Transport null

Optimization parameters
[¥] Tirmestarmp

TI-RTOS | Loggerldle &2 | Properties cfg Script

7. Save the configuration file.

To modify the configuration with a text editor, add the following statements at the end of the uartecho.cfg
file:

LoggingSetup.LoggerType IDLE;

LoggingSetup.loggerType =
LoggerIdle.TransportType USB;

LoggerIdle.transportType =

LoggerIdle.bufferSize = 1024;
LoggerIdle.transportFxn = "&USBCDCD LoggerIdle sendData";

Note: The configuration file should already contain the following statement:

var LoggingSetup = xdc.useModule('ti.uia.sysbios.LoggingSetup') ;

22 Instrumentation with TI-RTOS SPRUHD4l—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

www.ti.com Using Log Events

2.4 Using Log Events

You can add Log events to your application and control whether Log events are processed by drivers as
described in the following sub-sections.

24.1 Adding Log Events to your Code
Your application can send messages to a Log using the standard Log module APIs (xdc.runtime.Log).

Log calls are of the format Log typeN(String, argl, arg2.. argN). Valid types are print, info, warning
and error. N is the number of arguments between 0 and 5. For example:

|Log_info2("tskl Entering. arg0,1 = %4 %d", arg0, argl)

See the SYS/BIOS Log example project for more use cases.

2.4.2 Using Instrumented or Non-Instrumented Libraries

TI-RTOS allow you to control whether or not Log events are handled by choosing to build with the
instrumented or non-instrumented libraries. The instrumented libraries process Log events and Asserts,
while the non-instrumented libraries do not.

To select the type of library to build with, follow these steps: —
_ _ o _ l=# Available Products %]
1. Double-click on the configuration file (.cfg) for your project to open

it with the XGCONF Configuration Editor. type filter text
2. Inthe “Available Products” area, select the TIRTOS module. 4 3 TLRTOS
Select the Driver Options link. & TIRTOS
- &3 Drivers

4. On the configuration page, choose whether to use the

instrumented or non-instrumented libraries. : Menitors

a Q Products
. 33§ SYSBIOS
43 NDK

» TI-RTOS - Driver Options * - 35 UIA

- 333 XDCtools

. T=% Other Products

' TIResource Explorer 2 gpiointerrupt.cfg 3

Welcome S

= Library Selection Options

TI-RTO5 Driver Library Type
instrurnented (with asserts and logs)
@ non-instrumented

 Driver Usage
Use I2C Driver Use SOSPI Driver Use Watchdog Driver
Lse SPI Diriver o | Use GPIO Driver Use USBPMSCHFatFs Driver
o | Use UART Driver Use PWH Diriver Lse EMAC Driver

5. Onthe same page, check the boxes for any drivers your application will use. The WiFi driver must
be configured as a separate module. Use the Drivers folder in the Available Products pane.

See Section 5.2.1 for more about configuring instrumented or non-instrumented libraries. Refer to the
individual drivers in Chapter 5 for details about what is logged and which Diags masks are used.

SPRUHD4l—March 2015 Instrumentation with TI-RTOS 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

Viewing the Logs www.ti.com

2.5 Viewing the Logs

You can use CCS to view Log messages using the RTOS Analyzer, System Analyzer, and/or ROV tools.

251 Using RTOS Analyzer and System Analyzer

After you have built and run your application, follow these steps in the CCS Debug view to see Log
messages from your application with RTOS Analyzer:

1. Open an analyzer by selecting Tools > RTOS Analyzer > Printf and Error Logs.

2. The Analysis Configuration detects the type of transport you are using.

- ™
¥ vty Contrsion N ==

Printf and Error Logs Configuration

Errcrs, Warnings and Print Events collected from the target are shown in a log view.

Cores Instrumented Application Timestamp Freq. (MHz) Cycles pertick Transport
Cortex M30 yes CAlUsers\A... 1 1 UART
C28m 0 no

[] Custorn UIA Configuration file: w | | Create UI& Config File

3. Select additional analyzer views you would like to run.

Which Analysis Features to Run:

Analvsis Feature Which Cores Which Views to Open
[¥] Printf Logs ALL - Summary

[¥] Execution Graph ALL -~ Graph

[C]CPU Load ALL v Graph [..]
DCnncurrency ALL Graph E]

[Count Analysis ALL Summar}rg

[Task Load ALL Graph [...]

[] Context Aware Profile | ALL Summar}rg

[Duration ALL Summary [...

[] Task Profiler ALL Summary

4. Configure the analyzer to run for a set time or forever (that is, until you manually pause the data
transfer). You can also choose when to process the data (Transport Data only after collection),
whether to clear existing data and save the data to a file which can be imported back into SA.

= Data Collection

Limit data cellection time: SEC [] Transport Data only after collection
[¥] Set max size of binary data to collect: MB Clear logger buffers on target before starting collecti
Save collected binary data to folder: Save data to Folder: B
24 Instrumentation with TI-RTOS SPRUHD4I—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

1,

TeEXAs
INSTRUMENTS

www.ti.com Viewing the Logs

25.2

If you save data to a file, you can analyze it later by selecting Tools > RTOS Analyzer > Open File >
Open Binary File.

See Section 4.2 ("Starting an RTOS Analyzer or System Analyzer Session") in the System Analyzer
User’s Guide (SPRUH43) for more about using this dialog.

Viewing Log Records in ROV
The RTOS Object View (ROV) can be used to view log events stored on the target.

After you have built and run your application, you can open the ROV tool in the CCS Debug view by
selecting Tools > RTOS Object View (ROV) and then navigating to the logging module you want to view
(for example, LoggerStopMode or Loggerldle). When the target is halted, ROV repopulates the data.
Select the Records tab to view log events still stored in the buffer. For loggers configured to use JTAG,
the records shown here are also uploaded to System Analyzer. If you are using the Loggerldle module,
these are the records that have not yet been sent.

See the http://rtsc.eclipse.org/docs-tip/RTSC_Object_Viewer web page for more about using the RTOS
Object View (ROV) tool.

SPRUHD4l—March 2015 Instrumentation with TI-RTOS 25
Submit Documentation Feedback

http://rtsc.eclipse.org/docs-tip/RTSC_Object_Viewer
http://www.ti.com/lit/pdf/spruh43
http://www.ti.com/lit/pdf/spruh43
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

I

3.1

TEXAS
Chapter 3
INSTRUMENTS SPRUHD4I—March 2015

Debugging TI-RTOS Applications

This chapter provides information about ways to debug your TI-RTOS applications.

Topic Page
3.1 Using CCSDebuggingTools, 26
3.2 Generating printf Qutput 29
3.3 Controlling Software Versions for Use with TI-RTOS 32
3.4 Understanding the Build Flow 88

Using CCS Debugging Tools

Within Code Composer Studio (CCS), there are several tools you can use to debug your TI-RTOS
applications:

® RTOS Object View (ROV) is a stop-mode debugging tool, which means it can receive data about an
application only when the target is halted, not when it is running. ROV is a tool provided by the
XDCtools component. ROV gets information from many of the modules your applications are likely
to use.

& conscle B Tatble @ Task Load: Graph - Cortex_M3_0 B rTOS Object View (ROVY 23

Semaphare # ||| Basic | Detailed | Module | Faw

Startup address label priotity | mode | Fxn argo

S 0x200057d0 z Elocked ti_ndk_config_Global_sta... 0x00000

SyneSemn Ox20005515 i sysbios.knl. Task.IdleTask 0 Running k_sysbios_knl_Idle_loop... 0xO000001

=yshin 0200090 2 Blocked SerialMain 000000

Syskem Ox2000a1 an 10 Blocked temperature_Func 00000
M2000bSa0 5 Blocked dhcpState Dc2000b0

Tirner Qx2000c130 5 Blocked daemon Q00000

TransportCire

AR TConfig w

The ROV tool is also available for use with TI-RTOS examples within IAR Embedded Workbench.
See the TI-RTOS Getting Started Guide for your device family for details.

SPRUHD4|—March 2015 Debugging TI-RTOS Applications 26
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I

13 TEXAS
INSTRUMENTS

www.ti.com

Using CCS Debugging Tools

System Analyzer includes analysis features for viewing the CPU and thread loads, the execution
sequence, thread durations, and context profiling. The features include graphs, detailed logs, and
summary logs. These views gather data from the UIA component. For information, see the System
Analyzer User’s Guide (SPRUH43).

Mame Count Incl Count Min Incl Count Max Incl Count Average
Ce4XP_0, serverFxn(), doload(.0 14 2000203 2051632 2,003924.71
Ce4XP_1, serverFxni), doload().0 15 2000194 2000640 2,000,245.80
Ce4XP_2, serverFxn(), doload().0 16 2000135 2000622 2,000,244.00
160000000
§ 120000000
¥ 80000000 -
S 40000000 o
a
I T T T T T T T T T I T T T T T T T T T
59,718,140 58,718,640

End Time (ms)

Printf-style output lets you use the tried-and-true debugging mechanism of sending execution
information to the console. For information, see “Generating printf Output” on page 29.

Standard CCS IDE features provide many tools for debugging your applications. In CCS, choose
Help > Help Contents and open the Code Composer Help > Views and Editors category for a list
of debugging tools and more information. These debugging features include:

— Source-level debugger
— Assembly-level debugger

— Breakpoints (software and hardware) See Section 3.1.1 for information about stepping through
driver code.

— Register, memory, cache, variable, and expression views
— Pin and port connect views
— Trace Analyzer view

Exception Handling is provided by SYS/BIOS. If this module is enabled, the execution state is
saved into a buffer that can be viewed with the ROV tool when an exception occurs. Details of the
behavior of this module are target-specific. In the CCS online help, see the SYS/BIOS API Reference
help on the ti.sysbios.family.c64p.Exception module or the ti.sysbios.family.arm.exc.Exception
module for details.

Assert Handling is provided by XDCtools. It provides configurable diagnostics similar to the
standard C assert() macro. In the CCS online help, see the XDCtools API Reference help on the
xdc.runtime.Assert module for details.

SPRUHD4l—March 2015 Debugging TI-RTOS Applications 27
Submit Documentation Feedback

http://www.ti.com/lit/pdf/spruh43
http://www.ti.com/lit/pdf/spruh43
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

Using CCS Debugging Tools www.ti.com

3.1.1

Stepping Through TI-RTOS Code

Stepping through code is vital when debugging an application. When using CCS there are instances
where stepping into a TI-RTOS Kernel or Driver APl will produce an output message on the code editor
window similar to the following. A similar message is shown in IAR Embedded Workbench.

te] i2ctmpd0G.c [€] 2C_transfer{struct 2C_Config ", struct ZC_Transaction *) at /db/viree/library/trees/zumaprod/zumaprod-cd

Can't find a source file at "/db/viree/library/trees/zumaprod/zumaprod-c03/tirtos_mspd30_2 01_00_03/packages/ti/drivers/2C.c
Locate the file or edit the source lockup path to include its location.

| View Disassembly... |

Locate File... .

Since TI-RTOS provides pre-compiled libraries, the debug information in the library is based on the file
locations when the libraries were built. Because these locations differ on your system, when the
debugger attempts to access TI-RTOS library debug information, it cannot find the source files. There
are two ways to correct this issue: rebuild TI-RTOS or locate the source files.

Rebuilding TI-RTOS in your development environment regenerates the debug information for all libraries.
This process is only done once per TI-RTOS installation. (You will need to repeat these steps if you use

a different TI-RTOS product or if install a newer TI-RTOS version.) To rebuild TI-RTOS, see Section 9.1
and Section 9.1.4.

The other method is to locate the source files within the filesystem. This process is faster than rebuilding
TI-RTOS, but will need to be repeated for every TI-RTOS driver or kernel module being debugged. To
location the source files for CCS, follow these steps:

1. Click the Locate File button when the message shown above appears.

2. Navigate to the directory that contains the source file mentioned in the message. For TI-RTOS
drivers, this is likely <tirtos install dirs\packages\ti\drivers as shown in the figure below:

r Select sournce folder L3
4 tirtes_mapd20_2_10_00_20_eng .
docs
eclipze
exports H
a pui:e.ge_r.
eamples
F] 4]
e drivers

L]

dma

Folder: drivers

Make Hew Folder | OK Coarvel
ll]

28

Debugging TI-RTOS Applications SPRUHD4l—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

1,

TeEXAs
INSTRUMENTS

www.ti.com Generating printf Output

3.2

3.21

3.2.2

3. Click OK. The editor window will search for the file and show the source code.

i/ Tl Resource Explorer] Rctmpl0G.c g BCc 23
bool I2C_transfer({I2C Mandle handle, I2C Transaction “tranzaction)
¥ | Assert_isTrue{{handle != NULL) 88 (transaction != NULL}), NULL);
retura (handle->fxnTablePtr->transferFen(handle, tranzactlon));

'\.
d

IAR Embedded Workbench provides similar tools for locating the source files within the filesystem.

Generating printf Output

Along with many advanced GUI debugging features described in “Using CCS Debugging Tools” on
page 26, TI-RTOS provides flexibility with the tried-and-true printf method of debugging. TI-RTOS
supports both the standard printf() and a more flexible replacement called System_ printf().

Output with printf()

By default, the printf() function outputs data to a ClO buffer on the target. When CCS is attached to the
target (for example, via JTAG or USB), the printf() output is displayed in the Console window. It is
important to realize that when the CIO buffer is full or a ‘\n’ is output, a CIO breakpoint is hit on the target.
This allows CCS to read the data and output the characters to the console. Once the data is read, CCS
resumes running the target. This interruption of the target can have significant impact on a real-time
system. Because of this interruption and the associated performance overhead, use of the printf() APl is
discouraged.

The UART Console example shows how to route the printf() output to a UART via the add_device() API.

Output with System_printf()

The xdc.runtime.System module provided by the XDCtools component offers a more flexible and
potentially better-performing replacement to printf() called System_ printf().

The System module allows different low-level implementations (System Support implementations) to be
plugged in based on your needs. You can plug in the System Support implementation you want to use
via the application configuration. Your choice does not require any changes to the runtime code.

Currently the following System Support implementations are available:

® SysMin: Stores output to an internal buffer. The buffer is flushed to stdout (which goes to the CCS
Console view) when System_flush() is called or when an application terminates (for example, when
BIOS_exit() or exit() is called). When the buffer is full, the oldest characters are over-written.
Characters that have not been sent to stdout can be viewed via the RTOS Object View (ROV) tool.
The SysMin module is part of the XDCtools component. Its full module path is xdc.runtime.SysMin.

® SyscCallback: Simply calls user-defined functions that implement the System module's functionality.
The UART Console example provides a set of functions that use the UART. The SysCallback module
is part of the XDCtools component. Its full module path is xdc.runtime.SysCallback.

SPRUHD4l—March 2015 Debugging TI-RTOS Applications 29
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

Generating printf Output www.ti.com

® SysStd: Sends the characters to the standard printf() function. The SysStd module is part of the
XDCtools component. Its full module path is xdc.runtime.SysStd.

Most TI-RTOS examples use either the SysMin or SysStd module. The UART Console example uses
SysCallback and routes the output to a UART.

To configure the SysMin module, open the application’s *.cfg file with the XGCONF Configuration Editor.
In the Outline area, select the System module. Configure the System Provider to use SysMin as follows:

& *demo.cfg 22 = O

» TI-RTOS ' Products » SYSBIOS *» System * System - Module Settings °
Advanced
The Systern module provides basic "printf" cutput and system terminiation support.

Add System to my configuration

= Required Settings

System provider xde.runtime.SysMin

= Exit Handling Options + Extended Format Options

Maximurm 'atexit' functions 8 Systern support %65L%:55%5F
Abort hook xde.runtime.Systern.abort5td

Exit hook xde.runtime. System. exitStd

TI-RTOS | XDC/System &3 | cfg Script

Then, find the SysMin module in the Outline pane, and configure the output buffer and options as needed.
For example, here are the settings used by most examples provided with TI-RTOS:

& “demo.cfg 23

» » » » » System Providers * SysMin - Module Settings <~ & @

Advanced

The SysMin module provides buffer-based "back-end” support for the Systern module. This support only
requires minimal AMSI C runtime support and a memory buffer large enough to hold the characters
cutput via the System module's functions.

Add SysMin to my configuration
* Output Buffer » Qutput Options

Buffer size (chars) 1024 Cutput function null

Buffer section null Flush output buffer at exit

TI-RTO5 | XDC/System KDC SysMin 22 | cfg Script

SPRUHDA4l—March 2015

30 Debugging TI-RTOS Applications
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com

Generating printf Output

The following statements create the same configuration as the graphical settings shown for the System

and SysMin modules:

var System = xdc.useModule ('xdc.runtime.System') ;
var SysMin = xdc.useModule ('xdc.runtime.SysMin') ;

System. SupportProxy = SysMin;

The following table shows the pros and cons of the various System provider modules:

Table 3-1 System providers shipped with TI-RTOS

System Provider Pros

SysMin ® Good performance

SysStd ® Easy to use (just like printf)

SysCallback ® Can be used for many custom
purposes

Cons

® Requires RAM (but size is configurable)
® Potentially lose data

® Qut-of-box experience

[}

To view in CCS console, you must add System_flush()
or have the application terminate

Can use ROV to view output, but requires you halt the
target

Bad to use (just like printf). CCS halts target when CIO
buffer is full or a ‘\n’ is written
Cannot be called from a SYS/BIOS Hwi or Swi thread

Requires that you provide your own callback functions

Please note, the System module also provides the additional APIs that can be used instead of standard
‘C’ functions: System_abort(), System_atexit(), System_exit(), System_putch(), and System_flush().

SPRUHD4l—March 2015
Submit Documentation Feedback

Debugging TI-RTOS Applications 31

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

Controlling Software Versions for Use with TI-RTOS www.ti.com

3.3

Controlling Software Versions for Use with TI-RTOS

You do not need to add the "products” subdirectory to the RTSC (also called XDCtools) discovery path.
Once CCS has found the main TI-RTOS directory, it will also find the additional components provided in
that tree.

In addition, the components installed with TI-RTOS will be used as needed by examples you import with
the Tl Resource Explorer. When you choose Project > Properties for a project that uses TI-RTOS, the
sub-components are not checked in the RTSC tab of the General category. However, the version
installed with TI-RTOS is automatically used for sub-components that are needed by the example. You
can see these components and which versions are used by going to the Order tab.

|

t}'PEfiltEl’ text General (::l - v v

.
Configuration: [Debug [Active] 'I [Manage Configurations...]

P o1

Debu
9 ;= Maij El RTSC ’

XDCtools version: [3.B.1.43 VI [More...]

V <
| B Products and Repositori& % GdeFD

(2 §{COM_TI_RTSC_TIRTOS_INSTALL_DIR}/packages Up
[${COM_TI_RTSC_TIRTOS_INSTALL_DIRY products/bios_6_34_03_19/packages

(% §{COM_TLRTSC_TIRTOS_INSTALL_DIRY products/ipc_1_25_01_09/packages ——

(22 ${COM_TL RTSC_TIRTOS_ INSTALL DIRYproducts/ndk_2_22 00 06/packages

(B SICOM_TLRTSC_TIRTOS_IMNSTALL_DIR} products/uia_1_02_00_00_eng/packages

(2 S COM_TI_RTSC_TIRTOS_INSTALL_DIRY products/xdctools_3_24_05_48/packages
[Y TARGET_COMNTENT_BASE}

Target: titargets.arm.elf.M3
Platform: ti.platforms.concertoM3:F28M35H52C1 -
Build-profile: release -

Restore Defaults Apply

| ok || cancel

If, at a later time, you install newer software versions that you want to use instead of the versions installed
with TI-RTOS, you can use the Products and Repositories tab to add those versions to your project
and the Up and Down buttons in the Orders tab to make your newer versions take precedence over the
versions installed with TI-RTOS. However, you should be aware that is it possible that newer component
versions may not be completely compatible with your version of TI-RTOS.

Note that in the RTSC tab, the XDCtools version in the drop-down list is the version that controls Ul
behavior in CCS, such as the XGCONF editor and various RTSC dialog layouts. The XDCtools version
in the list of products is the version used for APIs and configuration, such as the xdc.runtime modules.

32

Debugging TI-RTOS Applications SPRUHD4l—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS

INSTRUMENTS

www.ti.com Understanding the Build Flow

3.4

Understanding the Build Flow

The build flow for TI-RTOS applications begins with an extra step to process the configuration file (*.cfg)
in the project. The configuration file is a script file with syntax similar to JavaScript. You can edit it
graphically in CCS using the XGCONF Configuration Editor. The configuration determines which
modules in TI-RTOS components are used, sets global behavior parameters for modules, and statically
creates objects managed by the modules. Static configuration has several advantages, including
reducing code memory use by the application. Components that can be configured using this file include
XDCtools, SYS/BIOS, TI-RTOS, IPC, NDK, and UIA.

The configuration file is processed by the XDCtools component. If you look at the messages printed
during the build, you will see a command line that runs the “xs” executable in the XDCtools component
with the “xdc.tools.configuro” tool specified. For example:

'Invoking: XDCtools'

"<>/xs" --xdcpath="<tirtos install>/packages;

<bios installs/packages;<uia installs>/packages;" xdc.tools.configuro -o configPkg
-t ti.targets.arm.elf.M3 -p ti.platforms.concertoM3:F28M35H52C1 -r release

-c "C:/ccs/cecsv6e/tools/compiler/tms470" "../<project>.cfg"

In CCS, you can control the command-line options used with XDCtools by choosing Project > Properties
from the menus and selecting the Build > XDCtools category.

I | type filter text XDCtools (=14 A
- Resource
General
4 Build Cenfiguration: |Debug [Active] " IManage Configurations...‘

- ARM Compiler
- ARM Linker
4| XDCtools
Package Repositories
Basic Options Command-line pattern: ${command} ${flags} ${inputs}
Advanced Options
Debug Summary of flags set:

Command: "SXDC_CG_ROOT}xs"

m

- =
xdecpath="C:/ti_ccs5_3/tirtos 1 01 0012 eng/packages;C:/ti_ccs5_3/tirtos 1 01 00_12_eng/prod I
ucts/bios_6_34_03_19/packages;C:/ti_ccs5_3/tirtos_ 1 01 00_12_eng/products/ipc_1_25 01_09/pac

kages; Ci/ti_ccs5_3/tirtos 1 01_00_12 eng/products/ndk_2_22 00_06/packages;Ci/ti_ccs5_3/tirtos_

1.01 0012 eng/products/uia_1_02_00_00_eng/packages; C:/ti_ccs5_3/tirtos 1 01 0012 eng/prod
ucts/xdctools_3_24 05_48/packages;Ci/ti_ccs5_3/ccsvh/ces_base" xdc.tools.configuro -o

configPkg -t ti.targets.arm.elf.M3 -p ti.platforms.concertoM3:F28M36P63C2 -r release -c
"Ci/ti_ces5_3/cesvh/tools/compiler/arm_5.01" --compileOptions "-g --optimize_with_debug”

'@:‘ Show advanced settings [0K] I Cancel ‘

Target settings for processing your individual project are in the RTSC tab of the CCS General category.
(RTSC is the name for the Eclipse specification implemented by XDCtools.)

When XDCtools processes your *.cfg file, the code is generated in the <project_dir>/Debug/configPkg
directory. This code is compiled so that it can be linked with your final application. In addition, a
compiler.opt file is created for use during program compilation, and a linker.cmd file is created for use in
linking the application. You should not modify the files in the <project_dir>/Debug/configPkg directory
after they are generated, since they will be overwritten the next time you build.

For more information about the build flow, see Chapter 2 of the SYS/BIOS User’s Guide (SPRUEXS). For
command-line details about xdc.tools.configuro, see the RTSC-pedia reference topic.

SPRUHD4l—March 2015 Debugging TI-RTOS Applications 33
Submit Documentation Feedback

http://www.ti.com/lit/pdf/spruex3
http://rtsc.eclipse.org/cdoc-tip/index.html#xdc/tools/configuro/package.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

I3 TEXAS

INSTRUMENTS

This chapter provides information that is specific to targets for which you can use TI-RTOS.

Chapter 4

SPRUHD4l—March 2015

Board-Specific Files

Topic Page

AL OVEIVIEW ottt ittt e e e e e 34

4.2 Board-Specific Code Files i 35

4.3 Linker Command Files 35

4.4 Target Configuration Files i 36

4.1 Overview
Currently, TI-RTOS provides examples for the following boards:
Family Device on Board Board
Concerto (ARM M3 + DSP 28x) F28M35H52C1 TMDXDOCKH52C1 Experimenter Kit
Concerto (ARM M3 + DSP 28x) F28M36P63C2 TMDXDOCK28M36 Experimenter Kit
ARM (Tiva) TM4C123GH6PM EK-TM4C123GXL LaunchPad
ARM (Stellaris) LM4F120H5QR EK-LM4F120XL LaunchPad
(earlier version of EK-TM4C123GXL LaunchPad)
ARM (Tiva) TM4C123GH6PGE DK-TM4C123G Evaluation Kit
ARM (Stellaris) LM4F232H5QD EKS-LM4F232 Evaluation Kit
(earlier version of DK-TM4C123G Evaluation Kit)

ARM (Tiva) Cortex-M4F TM4C129XNCZAD DK-TM4C129X Evaluation Kit
ARM (Tiva) TM4C1294NCPDT EK_TM4C1294XL Evaluation Kit
MSP430F5xx/6xx MSP430F5529 MSP-EXP430F5529LP LaunchPad
MSP430F5xx/6xx MSP430F5529 MSP-EXP430F5529 Experimenter Board
MSP430F5xx/6xx MSP430FR5969 MSP-EXP430FR5969LP LaunchPad
MSP432 MSP432P401R MSP-EXP432P401RLP LaunchPad
CC3200 (ARM Cortex-M4) CC3200 CC3200-LAUNCHXL
CC2650 (ARM Cortex-M3) CC2650F128 CC2650DK

F28M3x devices contain both M3 and 28x subsystems.

SPRUHD4I—March 2015

Board-Specific Files

Submit Documentation Feedback

34

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I

13 TEXAS
INSTRUMENTS

www.ti.com Board-Specific Code Files

TI-RTOS can also be used on other boards. Examples are provided specifically for the supported boards,
but libraries are provided for each of these device families, so that you can port the examples to similar
boards. The Texas Instruments Wiki contains a TI-RTOS Porting Guide and a topic on Creating TI-RTOS
Projects for Other MSP430 Devices.

4.2 Board-Specific Code Files

TI-RTOS examples contain a board-specific C file (and its companion header file). The filenames are
<board>.c and <board>.h, where <board> is the name of the board, such as TMDXDOCKH52C1. Notice
that an underscore is used in place of a hyphen in file and folder names for board names that contain a
hyphen, such as EKS-LM4F232.

All the examples for a specific board have identical <board> files. These files are considered part of the
application, and you can modify them as needed.

The board-specific code files do not perform any dynamic memory allocation.

The <board> files perform board-specific configuration of the drivers provided by TI-RTOS. For example,
they perform the following:

® GPIO port and pin configuration

® LED configuration

In addition, the board-specific files provide the following functions that you can use in your applications,
These are typically called from main(). Files are provided only for boards on which the driver is supported.

® <board>_initDMA() function

® <board>_initEMAC() function

® <board>_initGeneral() function

® <board>_initGPIO() function

® <board>_initl2C() function

® <board>_initSDSPI() function

® <board>_initSPI() function

® <board>_initUART() function

® <board>_initUSB() function

® <board>_initUSBMSCHFatFs() function
® <board>_initWatchdog() function

® <board>_initWiFi() function

4.3 Linker Command Files

All of TI-RTOS examples contain a <board>.cmd linker command file. A different file is provided for each
supported board. These files define memory segments and memory sections used by the application.

SPRUHD4l—March 2015 Board-Specific Files 35
Submit Documentation Feedback

http://processors.wiki.ti.com/index.php/TI-RTOS_Porting_Guide
http://processors.wiki.ti.com/index.php/Creating_TI-RTOS_Projects_for_Other_MSP430_Devices
http://processors.wiki.ti.com/index.php/Creating_TI-RTOS_Projects_for_Other_MSP430_Devices
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

Target Configuration Files www.ti.com

4.4 Target Configuration Files

To create a target configuration for an example provided with TI-RTOS, use Step 3 (Debugger
Configuration) in the Tl Resource Explorer. (To create TI-RTOS example projects using the Tl Resource
Explorer, see Chapter 3 of the TI-RTOS Getting Started Guide.)

Step 3: T, Debugger Configuration #

Connection: Blackhawk LAN560 Emulator
Click on the link above to change the device connection. Additionally, this
option is also available in the project properties.

When you click the link for Step 3, you see the Debugger Configuration dialog. Choose an emulator from
the list. For F28M3x devices, choose the Texas Instruments XDS 100v2 USB Emulator. For Tiva
devices, choose the Stellaris In-Circuit Debug Interface. For MSP430 devices, choose the TI MSP430
USB1. For MSP432 devices, use the Texas Instruments XDS 110 USB Emulator.

- ™
«« Debugger Configuration ‘ ﬁ

Connections: |Texas Instrurments XD5100v2 USE Emulator v]

| ok || cencel |

The Debugger Configuration step creates a CCS Target Configuration File (*.ccxml). This file specifies
the connection and device for the project for use in a debugging session. You can choose View > Target
Configurations in CCS to see and edit these files.

Note: If you want to use a simulator instead of a hardware connection, select any emulator in
the Debugger Configuration dialog and click OK. Then choose View > Target
Configurations. Expand the Projects list and double-click on the *.ccxml file for your
example project to open the target configuration editor. Select Texas Instruments
Simulator in the Connection field, and the simulator for your device in the Device list.
Then click Save.

For the F28M3x Demo example, you should not use a C28 target configuration. Instead, use the target
configuration for the M3 and connect to the C28 and load that application manually as described in the
example’s readme file.

36 Board-Specific Files SPRUHD4l—March 2015
Submit Documentation Feedback

http://processors.wiki.ti.com/index.php/Category:SYSBIOS
http://www.ti.com/lit/pdf/spruhd3
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

I3 TEXAS
INSTRUMENTS Chapter 5

SPRUHD4l—March 2015

TI-RTOS Drivers

This chapter provides information about the drivers provided with TI-RTOS.

Topic Page
5.1 OVEIVIEW oot e e 38
5.2 Driver Framework e 39
5.3 CamerabDriVer 49
5.4 EMAC DIIVEl ..ot e e 51
5.5 GPIO DIiVer . o 58
5.6 12C DIiVer . o oo 57
5.7 12S DIiVEN . o oo 64
5.8 PWM DIIVEI ..ot e 68
5.9 SDSPIDIIVEr ..ot e 71
5.10 SPIDIIVer . oot e 73
5.11 SPIMessageQTransSportttt 79
5.12 UART DIIVEI . e e e e e e e e 81
5.13 USBMSCHFatFs Driver e e 86
5.14 USB Reference Modules. i 89
5.15 USB Device and Host Modules 92
5.16 Watchdog Driver e 94
5.17 WIFI DIiVEr . oo 96

SPRUHD4l—March 2015 TI-RTOS Drivers 37

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I

Overview

13 TEXAS
INSTRUMENTS

www.ti.com

51 Overview

TI-RTOS includes drivers for a number of peripherals. These drivers are in the
<tirtos_installs/packages/ti/drivers directory. TI-RTOS examples show how to use these
drivers. Note that all of these drivers are built on top of MWare, MSPWare, TivaWare, CC26xxWare, and
CCWare. This chapter contains a section for each driver.

Camera. Driver for CC3200 Camera BoosterPack.
EMAC. Ethernet driver used by the networking stack (NDK) and not intended to be called directly.

GPIO. API set intended to be used directly by the application or middleware to manage the GPIO
interrupts, pins, and ports (and therefore the LEDS).

12C. (Inter-Integrated Circuit) API set intended to be used for attaching low-speed peripherals to
embedded system boards. The APIs are used directly by the application or middleware.

12s. (Inter-IC Sound) API set intended to be used for connecting digital audio devices so that audio
signals can be communicated between devices. The APIs are used directly by the application or
middleware.

LCD. Driver for CC26xx LCD display.
PIN. Driver for CC26xx Pin interrupts.

PWM. API set intended to be used directly by the application or middleware to generate Pulse Width
Modulated signals.

SDSPI. SPI-based SD driver used by FatFs and not intended to be interfaced directly.

SPI. API set intended to be used directly by the application or middleware to communicate with the
Serial Peripheral Interface (SPI) bus. This driver has been designed to operate in an RTOS
environment such as SYS/BIOS. It protects SPI transactions with OS primitives supplied by
SYS/BIOS. SPI is sometimes called SSI (Synchronous Serial Interface).

UART. API set intended to be used directly by the application to communicate with the UART.

USBMSCHFatFs. USB MSC Host under FatFs (for flash drives). This driver is used by FatFS and is
not intended to be called directly.

Other USB functionality. See the USB examples for reference modules that provide support for the
Human Interface Device (HID) class (mouse and keyboard) and Communications Device Class
(CDC). This code is provided as part of the examples, not as a separate driver.

Watchdog. API set for use directly by the application or middleware to manage the Watchdog timer.

WiFi. Driver used by a Wi-Fi device's host driver to exchange commands, data, and events between
the host MCU and the wireless network processor. Not intended to be interfaced directly.

In addition, TI-RTOS provides the following MessageQ transport:

SPIMessageQTransport. Transport for the SPI driver for use in multicore applications that use the
IPC component.

38 TI-RTOS Drivers SPRUHD4I—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com Driver Framework

5.2 Driver Framework

TI-RTOS drivers have a common framework for static configuration and for a set of APIs that all drivers
implement. This section describes that common framework. The driver-specific sections after the
framework description provide details about individual implementations.

5.2.1 Static Configuration

The following line in the *.cfg file for a TI-RTOS application causes all TI-RTOS drivers to be available to
the application build.

var TIRTOS = xdc.useModule('ti.tirtos.TIRTOS') ;

In addition, a statement similar to the following should be added to the configuration for each TI-RTOS
driver used by the application:

TIRTOS.useGPIO = true;

Note that this does not mean that all the driver code will be compiled into the application. To minimize
the memory footprint of the application, only driver library code called by the application will be included
in the compiled and linked executable.

By default, the application is configured to use non-instrumented libraries, which do not process Log
events and Asserts. You can select the instrumented libraries by using XGCONF as shown in Section
2.4.2 or by adding the following statement to your application’s *.cfg file:

TIRTOS.libType = TIRTOS.LibType Instrumented;

Refer to the individual drivers in this chapter for details about what is logged and which Diags masks are
used when instrumentation is enabled.

SPRUHD4l—March 2015 TI-RTOS Drivers 39
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

Driver Framework

13 TEXAS
INSTRUMENTS

www.ti.com

5.2.2 Driver Object Declarations
All TI-RTOS drivers require the application to allocate data storage and define a set of data structures
with specific hardware attributes. Drivers are designed in a two-tier hierarchy to facilitate scalable driver
additions and enhancements while providing a consistent application programming interface.
Joined at link-time:
“board.c” Driver Interface

#include <ti/drivers/Driver.h>
#include <ti/drivers/driver/DriverA.h>
#include <ti/drivers/driver/DriverB.h>

DriverA Object driverA object[2];

—
const DriverA HWAttrs driverA hwattrs([2] = {..};
DriverB Object driverB object; -
const DriverB HWAttrs driverB hwattrs = {..}; I

U-const Driver Config Driver configl] = {
{&driverA fnxTable, &driverA object[0], &driverA hwattrs([0]},
{&driverA_fnxTable, &driverA object[l], &driverA hwattrs[1]},

ti/drivers/Driver.h

typedef struct Driver FxnTable {

Driver closeFxn closeFxn;
Driver initFxn initFxn;
Driver openFxn openFxn;
Driver funcN funcNFxn;

} Driver FxnTable;

typedef struct Driver Config {
Driver FxnTable const *fxnTablePtr;
Void *object;
Void const *hwAttrs;

} Driver Config;

{&driverB fnxTable, &driverB object, &driverB hwattrs}, ’/

{NULL, NULL, NULL} Drlver ‘Implement‘atlon .
} ti/drivers/driver/DriverA.h

extern Driver FxnTable driverA fxnTable;
Purpose)) typedef struct DriverA Object {
T Specify the number of peripheral instances /* Specific object vars */
T Allocate the proper data object and hardware attributes for a given driver };
implementation) i o) typedef struct DriverA HWAttrs {

T Scalable expansion for varies driver implementations. /* Specific hardware attributes */
T Driver hardware attribute structures are owned and customizable by the application };

P extern Driver FxnTable driverB_fxnTable;

6river Implementation
ti/drivers/driver/DriverB.h

typedef struct DriverB Object {
/* Specific object vars */
}i

typedef struct DriverB HWAttrs {
/* Specific hardware attributes */
}i

This diagram shows the relationship between a driver interface and two driver implementations. The
driver interface named "Driver" is configured to operate on two driver implementations: "DriverA" and
"DriverB". The driver's Driver_config[] structure contains three instances. The first two instances are of

type "DriverA" and the third is of type "DriverB".

40 TI-RTOS Drivers

SPRUHD4|—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com Driver Framework

Applications interface with a TI-RTOS driver using a top-level driver interface. This interface is configured
via a set of data structures that specify one or more specific lower-level driver implementations. Driver

interfaces define data structures in <tirtos installs\packages\ti\drivers\Driver.h while driver
implementations are define in an additional subdirectory, named after the driver interface. For example,
the UART driver interface resides at <tirtos installs\packages\ti\drivers\UART.h and its driver
implementations exist in the <tirtos installs\packages\ti\drivers\uart\ subdirectory.

mmm APls calls and callbacks
; % Configuration data structures
mm | ow level hardware register calls

~TI-RTOS User Application and board specifics

|
main] o
0 I TI-RTOS User Application
(Pre-BIOS_start()) !
1
initDriver() RTOS-safe APls SYS/BIOS APls
TI-RTOS Drivers
L (B Driver Interface
| Driver_configll; |
Board Y
Initialization
“board.c” _ 1
A L LI ; 3 SYS/BIOS
(" Config structure daﬁniﬁonﬂ Driver Implementation
T pr— Kernel
Board specific init Driver Library APls
TivaWare / MWare / MSP430Ware
driverlib
Low Level Register I/O Timers, Boot, Jll Hwi modules

Hardware Register Level

Peripheral Specifics

5.2.2.1 Driver Interface

Each driver's interface defines a configuration data structure as:

typedef struct Driver Config {
Driver FxnTable const *fxnTablePtr;
Void *object;
Void const *hwAttrs;

} Driver Config;

(The GPIO driver is an exception. See Section 5.5.1.1.)

SPRUHD4l—March 2015 TI-RTOS Drivers 41
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

Driver Framework www.ti.com

5.2.2.2

The application must declare a NULL-terminated array of Driver_Config elements as

Driver configl[].The index argument in a driver's _open() call is used to select the array element of
this briver config[] array where each element corresponds to a peripheral instance. There is no
correlation between the index and the peripheral designation (such as UARTO or UART1). For example,
it is possible to use UART _config[0] for UARTL1.

Each individual Driver_Config element must be populated by pointers to a specific driver
implementation's Driver_FxnTable, Driver_Object, and Driver HWAUttrs data structures. While the
function table is defined by the driver implementation, the implementation-specific data object and
hardware attribute structures need to be defined by the application. With this Driver_config[] table, it is
possible to use any number of permutations of driver implementations per driver interface; assuming that
the device has the same number of peripherals available.

Driver Implementations

The application needs to create instances of both the object and hardware attribute structures for every
peripheral used with a given driver implementation. Instances of data objects are used to store driver
variables on a per peripheral basis and should be accessed exclusively by the driver. Hardware attribute
structures are used to specify implementation-specific constants such as peripheral base addresses,
interrupt vectors, GPIO pins, and more. Field definitions for these hardware attributes are determined by
the driver implementation's Doxygen documentation.

All TI-RTOS examples use a <board>.c file that contains necessary data object and hardware structure
instances, similar to the following:

static DriverA Object driverAObject;

const DriverA HWAttrs driverAHWAttrs = {
type fieldO;
type fieldl;

type fieldn;
These structures should be used as a reference when moving from a development board to a custom

printed circuit board. The following is an example that integrates a UART driver implementation into the
UART driver interface:

/* UART objects */
UARTTiva_Obj ect uartTivaObjects [EKS LM4F232 UARTCOUNT] ;

/* UART configuration structure */

const UARTTiva HWAttrs uartTivaHWAttrs [EKS LM4F232 UARTCOUNT] = {
{UARTO_BASE, INT UARTO}, /* UARTO */

}i

const UART Config UART config[] = {

{&UARTTiva_ fxnTable, &uartTivaObjects([0], &uartTivaHWAttrs[0]},
{NULL, NULL, NULL}

i

42

TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

I§ TEXAS
INSTRUMENTS
www.ti.com Driver Framework
5.2.3 Dynamic Configuration and Common APIs
TI-RTOS drivers all implement the following APIs (with the exception of the GPIO driver?).
® vVoid Driver init (Void)
— Initializes the driver. Must be called only once and before any calls to the other driver APIs.
Generally, this is done before SYS/BIOS is started.
— The board files in the examples call this function for you.
® Void Driver Params init (Driver Params *params)
— Initializes the driver’s parameter structure to default values. All drivers, with the exception of
GPIO, implement the Params structure. The Params structure is empty for some drivers.
® Driver Handle Driver open(UInt index, Driver Params *params)
— Opens the driver instance specified by the index with the params provided.
— If the params field is NULL, the driver uses default values. See specific drivers for their defaults.
— Returns a handle that will be used by other driver APIs and should be saved.
— Ifthere is an error opening the driver or the driver has already been opened, Driver_open()
returns NULL.
® vVoid Driver close(Driver Handle handle)
— Closes the driver instance that was opened, specified by the driver handle returned during open.
— Closes the driver immediately, without checking if the driver is currently in use. It is up to the
application to determine when to call Driver_close() and to ensure it doesn’t disrupt on-going
driver activity.
— The Watchdog driver does not have a close() function, because the watchdog timer cannot be
disabled once it has been enabled.
* The GPIO driver implements only GPIO _init() to avoid complicating the driver. See Section 5.5 for
information on using the GPIO driver.
5.2.4 TI-RTOS Driver Implementations for Concerto Devices
If you are modifying the <board>.c file for an application, you will see types and data structures that are
defined by the lower-level driver implementations. These implementations are provided in the driver
directories. For example, the lower-level implementation for the 12C driver is in the 12¢Tiva.c and
12CTiva.hfilesinthe <tirtos insall dirs\packages\ti\drivers\i2c directory.
The lower-level driver implementations for the TI-RTOS drivers on the M3 portion of Concerto devices
are as follows. (The *.c file is listed, but the *.h file contains important type definitions.)
®* EMAC: EMACTiva.c
® GPIO: GPIOTiva.c
® |2C: 12CTiva.c
¢ SDSPI: SDSPITiva.c
® SPI: SPITivaDMA.c
® UART: UARTTIiva.c
® USBMSCHFatFs: USBMSCHFatFsTiva.c
® Watchdog: WatchdogTiva.c
® WiFi: not available
SPRUHD4I—March 2015 TI-RTOS Drivers 43

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS

INSTRUMENTS
Driver Framework www.ti.com
5.2.5 TI-RTOS Driver Implementations for TivaC Devices
If you are modifying the <board>.c file for an application, you will see types and data structures that are
defined by the lower-level driver implementations. These implementations are provided in the driver
directories. For example, the lower-level implementation for the 12C driver is in the 12¢Tiva.c and
12CTiva.hfilesinthe <tirtos insall dirs\packages\ti\drivers\i2c directory.
The lower-level driver implementations for the TI-RTOS drivers on Tiva devices are as follows. (The *.c
file is listed, but the *.h file contains important type definitions.)
®* EMAC: EMACTiva.c
® GPIO: GPIOTiva.c
® |2C: 12CTiva.c
®* PWM: PWMTiva.c
® SDSPI: SDSPITiva.c
® SPI: SPITivaDMA.c
® UART: UARTTIiva.c
® UART DMA: UARTTivaDMA.c
® USBMSCHFatFs: USBMSCHFatFsTiva.c
® Watchdog: WatchdogTiva.c
® WiFi: WiFICC3100.c
5.2.6 TI-RTOS Driver Implementations for CC26xx Devices
For CC26xx devices, the <board.c> and <board.h> files are replaced with literal "Board.c" and "Board.h"
files. The purpose of these files is to #include a common device-specific "Board.c" and "Board.h" located
in <ti/board>. The board files located in <tirtos install dirs\packages\ti\boards are shared with
other CC2650 examples, so use caution if you choose to modify these files.
The data structures in these board files are defined by lower-level driver implementations. These
implementations are provided in the driver directories. For example, the lower-level implementation for
the 12C driver is in the I2CCC26XX.c and 12CCC26XX.h files in the
<tirtos_insall dirs\packages\tildrivers\i2c directory.
The lower-level driver implementations for the TI-RTOS drivers on CC26xx devices are as follows. (The
*.c file is listed, but the *.h file contains important type definitions.)
® Crypto: CryptoCC26XX.c
® |2C: 12CCC26XX.c
® PIN: PINCC26XX.c
® SPI: SPICC26XXDMA.c
® UART: UARTCC26XX.c
® Watchdog: WatchdogCC26XX.c
44 TI-RTOS Drivers SPRUHDA4l—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com Driver Framework

5.2.7 TI-RTOS Driver Implementations for CC3200 Devices

If you are modifying the <board>.c file for an application, you will see types and data structures that are
defined by the lower-level driver implementations. These implementations are provided in the driver
directories. For example, the lower-level implementation for the 12C driver is in the 12CCC3200.c and
I2CCC3200.h files in the <tirtos insall dirs\packages\ti\drivers\i2c directory.

The lower-level driver implementations for the TI-RTOS drivers on CC3200 devices are as follows. (The
*.c file is listed, but the *.h file contains important type definitions.)

¢ Camera: CameraCC3200DMA.c.
® GPIO: GPIOCC3200.c.

® |2C: 12CCC3200.c

® |2S:12SCC3200DMA.c

® Power: PowerCC3200.c

* PWM: PWMTimerCC3200.c

® SDSPI: SDSPICC3200.c

® SPI: SPICC3200DMA.c

¢® UART: UARTCC3200.c
® UART DMA: UARTCC3200DMA.c

® Watchdog: WatchdogCC3200.c

SPRUHD4l—March 2015 TI-RTOS Drivers 45
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

Driver Framework

13 TEXAS
INSTRUMENTS

www.ti.com

5.2.8 TI-RTOS Driver Hwis for MSP43x Devices

MSP432 devices use the Hwi dispatcher provided by the TI-RTOS Kernel. This dispatcher create the
necessary interrupts at run-time, so no special steps are required to support MSP432 interrupts.

However, for MSP430 devices, the TI-RTOS Kernel does not use a Hwi dispatcher to allow for run-time
creation of interrupts. For this reason, MSP430 users must create Hwis statically in the application's *.cfg
file. Follow the steps below to configure the appropriate Hwis for applications that use TI-RTOS drivers.

1. Identify the TI-RTOS drivers and implementations that you want to add into your application. TI-
RTOS has a set of MSP43x driver implementations to support the USCI and EUSCI peripherals.
Some TI-RTOS drivers (for example, WiFi) have dependencies on other TI-RTOS drivers.

2. Use Table 5-1 for MSP430F5xxx devices and Table 5-2 for MSP430FR5xxx devices to determine
whether these drivers require any Hwi interrupts to be created.

Table 5-1 Hwi functions required for TI-RTOS driver ISRs (USCI on MSP430F5xxx)

MSP430 Driver

TI-RTOS Driver Implementations Interrupt Service Routine Hwi Function Name

12C 12CUSCIB I2CUSCIB_hwilntFxn

SDSPI SDSPIUSCIA, N/A. This driver is polling based
SDSPIUSCIB

SPI SPIUSCIADMA, A DMA interrupt function defined by the user must call the SPI driver's
SPIUSCIBDMA SPI_servicelSR function.

UART UARTUSCIA UARTUSCIA_hwilntFxn

Watchdog WatchdogMSP430 N/A. This driver only generates a reset signal

WiFi WIiFiCC3100 The WIiFICC3100_hostintHandler function is tied to a GPIO interrupt. A user

DMA interrupt function calls SPI_servicelSR. (The WiFi driver uses the SPI
driver as a dependency.)

Table 5-2 Hwi functions required for TI-RTOS driver ISRs (EUSCI on MSP430FR5xxx)

MSP430 Driver

TI-RTOS Driver Implementations Interrupt Service Routine Hwi Function Name
12c I2CEUSCIB I2CEUSCIB_hwilntFxn
SDSPI SDSPIEUSCIA, N/A. This driver is polling based
SDSPIEUSCIB
SPI SPIUSCIADMA, A DMA interrupt function defined by the user must call the SPI driver's
SPIUSCIBDMA SPI_servicelSR function.
UART UARTEUSCIA UARTEUSCIA_hwilntFxn
Watchdog WatchdogMSP430 N/A. This driver only generates a reset signal
WiFi WIiFiCC3100 The WiFiCC3100_hostintHandler function is tied to a GPIO interrupt. A user
DMA interrupt function calls SPI_servicelSR. (The WiFi driver uses the SPI
driver as a dependency.)
46 TI-RTOS Drivers SPRUHDA4l—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS

INSTRUMENTS
www.ti.com Driver Framework
3. Ifthe TI-RTOS driver is interrupt driven, find the peripheral's base address for every driver

implementation entry in the HWALttrs data structure of the driver’s Driver_config[] array.

For example, I2C_Config[0] has its HWAttrs data structure configured to USCI_BO_BASE. Similarly,
I12C_Config[1] has its HWALtrs data structure configured to use USBI_B1 BASE.

/* I2C objects */
I2CUSCIB_Object i2CUSCIBObjeCtS[MSP_EXP43OF5529LP_I2CCOUNT];

/* I2C configuration structure */

const I2CUSCIB HWAttrs i2cUSCIBHWAttrs[MSP EXP430F5529LP I2CCOUNT] = {
USCI_BO_BASE,
USCI_B_T2C_CLOCKSOURCE_SMCLK

USCI_B1 BASE,
USCI_B_T2C_CLOCKSOURCE_SMCLK

Vi

const I2C _Config I2C configl] = {
&I2CUSCIB fxnTable,
&12cUSCIBObjects[0],
&12cUSCIBHWAttrs [0]

&I2CUSCIB fxnTable,
&12cUSCIBObjects[1],
&1i2cUSCIBHWAttrs [1]

b

{NULL, NULL, NULL}

Vi

4.

Hwi

Find the associated interrupt vector number for each peripheral at the specified base address. For

example, onthe MSP430F5529, the USBI_BO interrupt vector is 55 and the USCI_B1 interrupt vector
is 45. The interrupt vector number is set in the device's main *.h header file. For MSP430F5529, the
file would be msp430f5529.h.

— In CCS, this file is found in;: <CCS _install>/ccsv6/ccs_base/msp430/include.
— InIAR, this file is found in: <IAR_install>/430/inc.

Create Hwi objects for each entry in the Driver_config[] array using the information obtained in the
previous steps. Map the information to the Hwi in the following manner:

— Hwi (ISR) function. Use the Hwi function name from Table 5-1.
— Interrupt vector number. Use the vector number from the device's main *.h header file.

— Argument passed to ISR function. Use the index number into the Driver_config[] array.

objects can be created using the graphical user interface or by manually adding it to the project’s

*.cfg file. Both of the following examples configure two Hwi objects that run the I2CUSCIB_hwilntFxn
function required by the 12C driver with the interrupt vectors for USBI_BO0 and USBI_B1.

SPRUHD4l—March 2015 TI-RTOS Drivers 47
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

Driver Framework www.ti.com

This example shows the statements in the *.cfg file:

* ALl Hwis for MSP43@ must be created statically; including Hwis for TI-RTOS
* drivers

var hwiBParams = new Hwi.Params();

hwiBParams.instance.name = "hwi@";

hwiBParams.arg = @;

Program.global.hwi@ = Hwi.create(5s, "&I2CUSCIB hwiIntFxn", hwi@Params);
var hwilParams = new Hwi.Params();

hwilParams.instapgce. name = “hwil®™;
hwilParams.arg =

Program.global.hwil = Hwi.create[45, "8&I2CUSCIB hwiIntFfxn"} hwilParams);

This example shows how to configure the Hwi objects graphically with the XGCONF Configuration Editor:

¥ TI-RTOS " Products * SYSBIOS * Scheduling * Hwi - Instance Settings

Module Advanced
= Portable Hwis = Required Settings
howil Add ... Handle il
w ISR function R2CUSCIE_hwilntFxn

Interrupt number 45

« Additional Settings

Argurnent passed to ISR function 1

Interrupt pricrity -1

Event Id -1
Enable at startup

Masking options MaskingOption_SELF -
TI-RTOS |Hwi 52 | cfg Script|
48 TI-RTOS Drivers SPRUHD4I—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS

INSTRUMENTS
www.ti.com Camera Driver
5.3 Camera Driver
The Camera driver is used to retrieve the data being transferred by the Camera sensor. This driver
provides an API for capturing the image from the Camera sensor. The camera sensor control and
implementation are the responsibility of the application using the interface.
For details, see the Doxygen help by opening <tirtos installs\docs\doxygen\html\index.html.
(The CDOC help give details about statically configuring the driver, but no information about the APIs.)
5.3.1 Static Configuration
See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the
instrumented driver libraries, which are helpful in debugging. To enable this driver, add the following
statement to your application’s *.cfg file.
TIRTOS.useCamera = true;
5.3.2 Runtime Configuration
As the overview in Section 5.2.2 indicates, the Camera driver requires the application to initialize board-
specific settings and provide the Camera driver with the Camera_config structure.
5.3.2.1 Board-Specific Configuration
The <board>.c files contain a <board>_initCamera() function that initializes the board-specific Camera
peripheral settings. This function also calls Camera_init() to initialize the Camera driver.
5.3.2.2 Camera_Params Structure
The Camera_Params structure may be used to override the default settings for an Camera instance you
are creating. The params in the structure must be set before calling Camera_open(). The structure has
the following fields:
typedef struct Camera Params {
Camera_ CaptureMode captureMode; /* blocking or callback mode */
uint32 t outputClock; /* to set divider */
Camera_ HSyncPolarity hsyncPolarity; /* polarity of horizontal Sync */
Camera VSyncPolarity vsyncPolarity; /* polarity of vertical Sync */
Camera_ PixelClkConfig pixelClkConfig; /* rising edge or falling edge */
Camera_ ByteOrder byteOrder; /* order of bytes captured */
Camera_ IfSynchoronisation interfaceSync; /* camera-sensor synchronisation */
Camera_ StopCaptureConfig stopConfig; /* action when capture stops */
Camera_StartCaptureConfig startConfig; /* action when capture starts */
uint32 t captureTimeout; /* timeout length for capture */
void *custom; /* custom target-specific option */
5.3.3 Camera Modes
The Camera operation mode determines whether transmit and/or receive modes are enabled. The mode
is specified with one of the following constants:
® Camera_MODE_BLOCKING: Uses a semaphore to block while data is being sent. Context of the
call must be a Task.
® Camera_MODE_CALLBACK: Non-blocking call, which will return immediately. When the capture by
the interrupt, is finished the configured callback function is called.
Other enumerated types are available for other Camera driver parameters.
SPRUHD4|—March 2015 TI-RTOS Drivers 49

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

Camera Driver www.ti.com

5.3.4

53.4.1

53.4.2

5.3.5

APls

In order to use the Camera module APIs, the Camera.h header file should be included in an application
as follows:

#include <ti/drivers/Camera.h>

The following are the Camera APIs:

® Camera_init() initializes the Camera module.

® Camera_Params_init() initializes an Camera_Params data structure.

® Camera_open() initializes a given Camera instance.

® Camera_close() deinitializes a given Camera instance.

® Camera_control() performs implementation-specific features on a given Camera peripheral.
® Camera_capture() handles the capture of a frame.

For detalls, see the Doxygen help by opening <tirtos installs>\docs\doxygen\html\index.html.
(The CDOC help provides information about configuring the driver, but no information about the APIs.)

Opening the Camera driver

To open a Camera driver instance, initialize a Camera_Params object and specify the desired
parameters.

Camera_ Handle handle;
Camera_Params params;

Camera Params_init (¶ms) ;
params .captureMode = Camera_MODE_BLOCKING;
/* Change any other params as needed */
handle = Camera_ open (someCamera configIndexValue, ¶ms) ;
if (!handle) {
System printf ("Camera did not open") ;
}

Writing Data

The following example calls Camera_capture() to cause a picture to be taken by the camera and the
photo to be placed in a buffer.

unsigned char captureBuffer[1920];

ret = Camera_ capture (handle, &captureBuffer, sizeof (captureBuffer));

Examples

See the SimpleLink Wi-Fi CC3200 Software Development Kit (SDK) for examples that use this driver.

50

TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com EMAC Driver

5.4

54.1

54.2

5421

5422

5.4.3

5.4.4

EMAC Driver

This is the Ethernet driver used by the networking stack (NDK).

Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the
instrumented driver libraries, which are helpful in debugging.

To enable this driver, add the following statement to your application’s *.cfg file.

TIRTOS.useEMAC = true;

Runtime Configuration

As the overview in Section 5.2.2 indicates, the EMAC driver requires the application to initialize board-
specific portions of the EMAC and provide the EMAC driver with the EMAC_config structure.

Board-Specific Configuration

The <board>.c files contain a <board>_initEMAC() function that must be called to initialize the board-
specific EMAC peripheral settings. This function also calls the EMAC _init() to initialize the EMAC driver.

EMAC_config Structure

The <board>.c file also declare the EMAC_config structure. This structure must be provided to the EMAC
driver. It must be initialized before the EMAC _init() function is called and cannot be changed afterwards.

For details about the individual fields of this structure, see the Doxygen help by opening
<tirtos_install>\docs\doxygen\html\index.html. (The configuration help available from within
CCS provides information about configuring the driver, but no information about the APIs.)

APIs
To use the EMAC module APIs, the EMAC header file should be included in an application as follows:
#include <ti/drivers/EMAC.h>
The following EMAC API is provided:

® EMAC init() sets up the EMAC driver. This function must be called before the NDK stack thread is
started.

For detalls, see the Doxygen help by opening <tirtos installs>\docs\doxygen\html\index.html.
(The CDOC help provides information about configuring the driver, but no information about the APIs.)

See the NDK documentation for information about NDK APIs that can be used if the EMAC driver is
enabled and initialized.
Usage

The EMAC driver is designed to be used by the NDK. The only function that must be called is the
EMAC _init() function. This function must be called before BIOS_start() is called to ensure that the driver
is initialized before the NDK starts.

SPRUHD4l—March 2015 TI-RTOS Drivers 51
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

EMAC Driver www.ti.com

5.4.5

5.4.6

Instrumentation

The EMAC driver logs the following actions using the Log_print() APIs provided by SYS/BIOS.

EMAC driver setup success or failure.

EMAC started or stopped.

EMAC failed to receive or transmit a packet.
EMAC successfully sent or received a packet.
No packet could be allocated.

Packet is too small for the received buffer.

Logging is controlled by the Diags_ USER1 and Diags_ USER2 masks. Diags_ USER1 is for general
information and Diags_USER?2 is for more detailed information.

The EMAC driver provides the following ROV information through the EMAC module.

Basic parameters:
— intVectld

— macAddr

— libType
Statistics:

— rxCount

— rxDropped
— txSent

— txDropped

Examples

See the TI-RTOS Getting Started Guide for your device family for a list of examples that use this driver.

52

TI-RTOS Drivers SPRUHD4I—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com GPIO Driver

5.5

551

5511

GPIO Driver

The GPIO module allows you to manage General Purpose 1/O pins via simple and portable APls. GPIO
pin behavior is usually configured statically, but can also be configured or reconfigured at runtime.

The application is required to supply a device specific GPIOxxx_Config structure to the module, where
xxx is the name of the target family. This structure communicates to the GPIO module which GPIO pins
are used by the application and how they are to be configured. (See the GPIO_PinConfig array
description in Section 5.5.1.2.)

The application is required to call GPIO_init(). This function initializes all the GPIO pins defined in the
GPIO_PinConfig table to the configurations specified. Once initialization is complete, the other APIs can
be used to access the pins.

Because of its simplicity, the GPIO driver does not follow the model of other TI-RTOS drivers in which a
driver application interface has separate device-specific implementations. This difference is most
apparent in the GPIOxxx_Config structure (described in more detail in Section 5.5.1.1), which does not
require you to specify a particular function table or object.

Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the
instrumented driver libraries, which are helpful in debugging.

To enable this driver, add the following statement to your application’s *.cfg file.

TIRTOS.useGPIO = true;

GPIO_Config Structure

The <boards . c file declares a board-specific GPIOxxx_Config structure. This structure is used internally
by the GPIO Driver and must be provided by the user. Currently the GPIOxxx_Config structure usually
consists of pointers to two arrays—an array of GPIO_PinConfig elements and an array of GPIO_Callback
elements—their respective number of elements, and an interrupt priority field used to configure the
interrupts that will be used for input pins with callbacks.

Below is an example of a typical GPIOxxx_Config structure, in this case specific to Tiva boards:

typedef struct GPIOTiva_ Config {
/*1 Pointer to the board's GPIO PinConfig array */
GPIO PinConfig *pinConfigs;

/*1 Pointer to the board's GPIO CallbackFxn array */
GPIO_CallbackFxn *callbacks;

/*1 number of GPIO PinConfigs defined */
uint32 t numberOfPinConfigs;

/*! number of GPIO Callbacks defined */
uint32 t numberOfCallbacks;

/*! GPIO interrupt priority. Setting (~0) configures lowest priority */
uint32 t intPriority;
} GPIOTiva_ Config;

A brief discussion of several fields in this structure follows. For more additional details, see the Doxygen
help by opening <tirtos install>\docs\doxygen\html\index.html. (The CDOC help provides
information about configuring the driver, but no information about the APIs.)

SPRUHD4l—March 2015 TI-RTOS Drivers 53
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

GPIO Driver www.ti.com

5512

5513

5514

GPIO_pinConfig Array

The elements in this array define the configuration and device-specific identities for each of the physical
GPIO pins used by the application. A pin is referenced in the application by its corresponding index in
this array.

The pin type (that is, INPUT/OUTPUT), its initial state (that is OUTPUT_HIGH or LOW), and interrupt
behavior (RISING/FALLING edge, etc.) are configured in each element of this array.

For example, this GPIO_PinConfig array for Tiva is provided in the EK_TM4C1294XL.h file.

GPIO PinConfig gpioPinConfigs[] = {
/* Input pins */
/* EK TM4C1294XL USR_SW1 */
GPIOTiva PJ 0 | GPIO CFG_IN PU | GPIO CFG_IN INT RISING,
/* EK TM4C1294XL USR_SW2 */
GPIOTiva PJ 1 | GPIO CFG_IN PU | GPIO CFG_IN INT RISING,

/* Output pins */

/* EK TM4C1294XL USR D1 *x/

GPIOTiva PN 1 | GPIO CFG OUT_STD | GPIO_CFG _OUT STR HIGH | GPIO_CFG _OUT LOW,
/* EK TM4C1294XL USR_D2 *x/

GPIOTiva PN 0 | GPIO CFG_OUT STD | GPIO CFG OUT STR_HIGH | GPIO CFG_OUT LOW,

}i
GPIO_callbackFxn Array

Each element in this array is a callback function pointer for each of the GPIO pins configured to interrupt
the device. The indexes for these array elements correspond to the pins defined in the GPIO_pinConfig
array. These function pointers can be defined statically by referencing the callback function name in the
array element, or dynamically, by setting the array element to NULL and using GPIO_setCallback() at
runtime to plug the callback entry.

For example, this GPIO_callbackFxn array for Tiva is provided in the EK_TM4C1294XL.h file.

GPIO CallbackFxn gpioCallbackFunctions[] = {
NULL, /* EK TM4C1294XL USR_SW1 */
NULL /* EK TM4C1294XL USR_SW2 */

}i
Pins not used for interrupts can be omitted from callbacks array to reduce memory usage (if they are
placed at end of GPIO_pinConfig array).
intPriority
(Not used for MSP430.)

This parameter defines the priority of the interrupt associated with the pins. Values for this parameter are
device-specific. You should be well-acquainted with the interrupt controller used in your device before
setting this parameter to a non-default value. The sentinel value of ~(0) (the default value) is used to
indicate that the lowest possible priority should be used.

54

TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com GPIO Driver

5.5.2

5521

Runtime Configuration

As the overview in Section 5.2.2 indicates, the GPIO driver requires the application to initialize board-
specific portions of the GPIO and provide the GPIO driver with a board-specific GPIOxxx_config
structure.

Board-Specific Configuration

The <boards. c files contain a <board>_initGPIO() function that must be called at runtime—usually within
main()—to initialize board-specific GPIO peripheral settings. Unlike other drivers, there in no board-
specific initialization performed by this function. It simply calls GPIO_init(), which initializes the GPIO
driver and configures all the pins as prescribed by the GPIOxxx_Config structure.

5.5.3 APIs
In order to use the GPIO module APIs, the GPIO header file should be included in an application as
follows:
#include <ti/drivers/GPIO.h>
The following are the GPIO APIs:
® GPIO_init() sets up the configured GPIO pins.
® GPIO_read() gets the current state of the specified GPIO input pin.
® GPIO_write() sets the state of the specified GPIO pin to on or off.
® GPIO_toggle() toggles the state of the specified GPIO pin.
® GPIO_setCallback() dynamically binds a callback function to the specified GPIO input pin.
® GPIO_setConfig() dynamically configures the specified GPIO input pin.
® GPIO_clearint() clears the interrupt flag for the specified GPIO pin.
® GPIO_disablelnt() disables interrupts on the specified GPIO pin.
® GPIO_enablelnt() enables interrupts on the specified GPIO pin.
For detalls, see the Doxygen help by opening <tirtos installs>\docs\doxygen\html\index.html.
554 Usage
Once the GPIO_init() function has been called, the other GPIO APIs functions can be called. For
example, LEDs can be switched on as follows:
GPIO write(Board LEDO, Board LED ON) ;
GPIO write(Board LED1, Board LED ON) ;
GPIO write(Board LED2, Board LED ON) ;
For GPIO interrupts, once the GPIO_setCallback() function has been called to install a callback for a pin
that pin’s interrupt can be enabled as shown below:
/* Install callback and enable interrupts */
GPIO setCallback (Board BUTTONO, gpioButtonFxnoO) ;
GPIO setCallback (Board BUTTON1, gpioButtonFxnl) ;
GPIO_enablelInt (Board BUTTONO) ;
GPIO enablelInt (Board BUTTON1) ;
SPRUHD4I—March 2015 TI-RTOS Drivers 55

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

GPIO Driver www.ti.com

55.5 Instrumentation
The GPIO driver logs the following actions using the Log_print() APIs provided by SYS/BIOS:

® GPIO pin read.

® GPIO pin toggled.

® GPIO pin written to.

® GPIO hardware interrupt creation failure.
® GPIO interrupt flag cleared.

® GPIO interrupt enabled.

® GPIO interrupt disabled.

Logging is controlled by the Diags USER1 and Diags_ USER2 masks. Diags_ USER1 is for general
information and Diags_USER?2 is for more detailed information.

The GPIO driver provides ROV information through the GPIO module. All GPIOs that have been created
are displayed by their base address and show the following information:
® Basic parameters:

— index

— port

— pin

— direction (input/output)

— value (only output values are shown)

5.5.6 Examples

All the TI-RTOS examples use the GPIO driver. The GPIO Interrupt example demonstrates interrupt
usage. The GPIO_init() function is called in the board-specific file (for example, CC3200_LP.c). A filled
in GPIO_Config structure is provided in the same file.

56 TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com 12C Driver

5.6

5.6.1

5.6.2

56.2.1

5.6.2.2

5.6.3

IC Driver

This section assumes that you have background knowledge and understanding about how the 12C
protocol operates. For the full 12C specifications and user manual (UM10204), see the NXP
Semiconductors website.

The I2C driver has been designed to operate as a single 12C master by performing 12C transactions
between the target and 12C slave peripherals. The 12C driver does not support 12C slave mode at this time.
12C is a communication protocol—the specifications define how data transactions are to occur via the 12c
bus. The specifications do not define how data is to be formatted or handled, allowing for flexible
implementations across different peripheral vendors. As a result, the 12C handles only the exchange of
data (or transactions) between master and slaves. It is the left to the application to interpret and
manipulate the contents of each specific 12c peripheral.

The I°C driver has been designed to operate in a RTOS environment such as SYS/BIOS. It protects its
transactions with OS primitives supplied by SYS/BIOS.
Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the
instrumented driver libraries, which are helpful in debugging.

To enable this driver, add the following statement to your application’s *.cfg file.

TIRTOS.uselI2C = true;

Runtime Configuration

As the overview in Section 5.2.2 indicates, the I12C driver requires the application to initialize board-
specific portions of the 1°C and provide the 12C driver with the I2C_config structure.

Board-Specific Configuration

The <board>.c files contain a <board>_initl2C() function that must be called to initialize the board-specific
12c peripheral settings. This function also calls the 12C_init() to initialize the 12C driver.

I2C_config Structure

The <board>.c file also declare the 12C_config structure. This structure must be provided to the 1°C driver.
It must be initialized before the 12C_init() function is called and cannot be changed afterwards.

For details about the individual fields of this structure, see the Doxygen help by opening
<tirtos_install>\docs\doxygen\html\index.html. (The CDOC help provides information about
configuring the driver, but no information about the APIs.)

APIs
In order to use the 12C module APIs, the 12C.h header file should be included in an application as follows:

#include <ti/drivers/I2C.h>

The following are the 12C APIs:

® |2C_init() initializes the 1°C module.

SPRUHD4l—March 2015 TI-RTOS Drivers 57
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com
http://www.nxp.com/documents/user_manual/UM10204.pdf

13 TEXAS
INSTRUMENTS

12C Driver www.ti.com

5.6.4

56.4.1

5.6.4.2

® |2C_Params_init() initializes an 12C_Params data structure. It defaults to Blocking mode.
® |2C_open() initializes a given I1°C peripheral.

® |2C_close() deinitializes a given I°C peripheral.

® |2C_transfer() handles the 1°C transfer for SYS/BIOS.

The 12C_transfer() API can be called only from a Task context. It requires an 12C_Tramsaction structure
that specifies the location of the write and read buffer, the number of bytes to be processed, and the 12C
slave address of the device.

For detalls, see the Doxygen help by opening <tirtos installs\docs\doxygen\html\index.html.
(The CDOC help provides information about configuring the driver, but no information about the APIs.)

Usage

The application needs to supply the following structures in order to set up the framework for the driver:
® |2C_Params specifies the transfer mode and any callback function to be used. See Section 5.6.4.1.
® |2C_Transaction specifies details about a transfer to be performed. See Section 5.6.4.2.

® |2C_Callback specifies a function to be used if you are using callback mode. See Section 5.6.4.3.

I2C Parameters

The I12C_Params structure is used with the 12C_open() function call. If the transferMode is set to
12C_MODE_BLOCKING, the transferCallback argument is ignored. If transferMode is set to
I2C_MODE_CALLBACK, a user-defined callback function must be supplied.

typedef struct I2C_Params {
I2C TransferMode transferMode; /* Blocking or Callback mode */
I2C CallbackFxn transferCallbackFxn; /* Callback function pointer */
} I2C Params;

12C Transaction
The I12C_Transaction structure is used to specify what type of I2C_transfer needs to take place.

typedef struct I2C_Transaction {
UChar *writeBuf; /* Pointer to a buffer to be written */
UInt writeCount; /* Number of bytes to be written */

UChar *readBuf; /* Pointer to a buffer to be read */
UInt readCount; /* Number of bytes to be read */

UChar slaveAddress; /* Address of the I2C slave device */

UArg arg; /* User definable argument to the callback function */
Ptr nextPtr; /* Driver uses this for queuing in I2C MODE CALLBACK */
} I2C Transaction;

slaveAddress specifies the 1°C slave address the 12C will communicate with. If writeCount is nonzero,
12C_transfer writes writeCount bytes from the buffer pointed by writeBuf. If readCount is nonzero,
12C_transfer reads readCount bytes into the buffer pointed by readBuf. If both writeCount and readCount
are non-zero, the write operation always runs before the read operation.

The optional arg variable can only be used when the 12C driver has been opened in Callback mode. This
variable is used to pass a user-defined value into the user-defined callback function.

58

TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com 12C Driver

5.6.4.3

nextPtr is used to maintain a linked-list of I2C_Transactions when the 12C driver has been opened in
Callback mode. It must never be modified by the user application.

12C Callback Function Prototype

This typedef defines the function prototype for the 12C driver’s callback function for Callback mode. When
the 12C driver calls this function, it supplies the associated 12C_Handle, a pointer to the 12C_Transaction
that just completed, and a Boolean value indicating the transfer result. The transfer result is the same as
from the 12C_transfer() when operating in Blocking mode.

typedef Void (*I2C Callback) (I2C_Handle, I2C Transaction *, Bool) ;

5.6.5 I°’C Modes
The I12C driver supports two modes of operation, blocking and callback modes. The mode is determined
when the 12C driver is opened using the I2C_Params data structure. If no 12C_Params structure is
specified, the 12C driver defaults to blocking mode. Once opened, the only way to change the operation
mode is to close and re-open the 12C instance with the new mode.

5.6.5.1 Opening in Blocking Mode
By default, the 12C driver operates in blocking mode. In blocking mode, a Task’s code execution is
blocked until an 12C transaction has completed. This ensures that only one 12C transaction operates at a
given time. Other tasks requesting 12C transactions while a transaction is currently taking place are also
placed into a blocked state and are executed in the order in which they were received.
I2C _Handle i2c;
UInt peripheralNum = 0; /* Such as I2C0 */
I2C_ Params i2cParams;
I2C Params_init (&i2cParams) ;
i2cParams.transferMode = I2C MODE BLOCKING;
i2cParams.transferCallbackFxn = NULL;
i2c = I2C open(peripheralNum, &i2cParams) ;
if (i2c == NULL) {

/* Error opening I2C */

}
If no 12C_Params structure is passed to 12C_open(), default values are used. If the open call is
successful, it returns a non-NULL value.

SPRUHD4|—March 2015 TI-RTOS Drivers 59

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

12C Driver www.ti.com

5.6.5.2

5.6.5.3

5.6.6

Opening in Callback Mode

In callback mode, an I2C transaction functions asynchronously, which means that it does not block a
Task’s code execution. After an 1C transaction has been completed, the 12C driver calls a user-provided
hook function. If an I12C transaction is requested while a transaction is currently taking place, the new
transaction is placed onto a queue to be processed in the order in which it was received.

I2C Handle i2c;
UInt peripheralNum = 0; /* Such as I2C0 */
I2C_ Params i2cParams;

I2C Params_init (&i2cParams) ;
i2cParams.transferMode = I2C MODE CALLBACK;
i2cParams.transferCallbackFxn = UserCallbackFxn;

i2c = I2C open(peripheralNum, &i2cParams) ;
if (i2c == NULL) {

/* Error opening I2C */
}

Specifying an 1°C Bus Frequency

The 12C controller’s bus frequency is determined as part the 12C_Params data structure and is set when
the application calls 12C_open(). The standard 12C bus frequencies are 100 kHz and 400 kHz, with 100
kHz being the default.

I2C Handle i2c;
UInt peripheralNum = 0; /* Such as I2C0 */
I2C_ Params i2cParams;

I2C_Params_init (&i2cParams); /* Default is I2C 100kHz */
i2cParams.bitRate = I2C 400kHz;
i2c¢ = I2C _open(peripheralNum, &i2cParams) ;
if (i2c == NULL) {
/* Error Initializing I2C */
}

I2C Transactions

12C can perform three types of transactions: Write, Read, and Write/Read. All 12C transactions are atomic
operations with the slave peripheral. The 12C_transfer() function determines how many bytes need to be
written and/or read to the designated 12C peripheral by reading the contents of an I2C_Transaction data
structure.

The basic 12C_Transaction arguments include the slave peripheral’s I°C address, pointers to write and
read buffers, and their associated byte counters. The I2C driver always writes the contents from the write
buffer before it starts reading the specified number of bytes into the read buffer. If no data needs to be

written or read, simply set the corresponding counter(s) to 0.

60

TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

www.ti.com 12C Driver

5.6.6.1

5.6.6.2

Write Transaction (Blocking Mode)

As the name implies, an 12C write transaction writes data to a specified 12C slave peripheral. The following
code writes three bytes of data to a peripheral with a 7-bit slave address of 0x50.

I2C Transaction i2cTransaction;

UChar writeBuffer[3];

UChar readBuffer[2];

Bool transferOK;

i2cTransaction.slaveAddress = 0x50; /* 7-bit peripheral slave address */
i2cTransaction.writeBuf = writeBuffer; /* Buffer to be written */
i2cTransaction.writeCount = 3; /* Number of bytes to be written */
i2cTransaction.readBuf = NULL; /* Buffer to be read */
i2cTransaction.readCount = 0; /* Number of bytes to be read */

transferOK = I2C transfer(i2c, &i2cTransaction); /* Perform I2C transfer */
if (!transferOK) {

/* I2C bus fault */
!

Read Transaction (Blocking Mode)

A read transaction reads data from a specified 12C slave peripheral. The following code reads two bytes
of data from a peripheral with a 7-bit slave address of 0x50.

I2C Transaction i2cTransaction;

UChar writeBuffer[3];

UChar readBuffer[2];

Bool transferOK;

i2cTransaction.slaveAddress = 0x50; /* 7-bit peripheral slave address */
i2cTransaction.writeBuf = NULL; /* Buffer to be written */
i2cTransaction.writeCount = 0; /* Number of bytes to be written */
i2cTransaction.readBuf = readBuffer; /* Buffer to be read */
i2cTransaction.readCount = 2; /* Number of bytes to be read */

transferOK = I2C transfer(i2c, &i2cTransaction); /* Perform I2C transfer */
if (!transferOK) {
/* I2C bus fault */

SPRUHD4l—March 2015 TI-RTOS Drivers 61
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

12C Driver www.ti.com

5.6.6.3

5.6.6.4

Write/Read Transaction (Blocking Mode)

A write/read transaction first writes data to the specified peripheral. It then writes an 12C restart bit, which
starts a read operation from the peripheral. This transaction is useful if the 12c peripheral has a pointer
register that needs to be adjusted prior to reading from referenced data registers. The following code
writes three bytes of data, sends a restart bit, and reads two bytes of data from a peripheral with the slave
address of 0x50.

I2C Transaction i2cTransaction;

UChar writeBuffer[3];

UChar readBuffer[2];

Bool transferOK;

i2cTransaction.slaveAddress = 0x50; /* 7-bit peripheral slave address */
i2cTransaction.writeBuf = writeBuffer; /* Buffer to be written */
i2cTransaction.writeCount = 3; /* Number of bytes to be written */
i2cTransaction.readBuf = readBuffer; /* Buffer to be read */
i2cTransaction.readCount = 2; /* Number of bytes to be read */

transferOK = I2C transfer(i2c, &i2cTransaction); /* Perform I2C transfer */
if (!transferOK) {
/* I2C bus fault */

Write/Read Transaction (Callback Mode)

In callback mode, 12C transfers are non-blocking transactions. After an 12C transaction has completed,
the 1°C interrupt routine calls the user-provided callback function, which was passed in when the 12c
driver was opened.

In addition to the standard I2C_Transaction arguments, an additional user-definable argument can be
passed through to the callback function.

I2C Transaction i2cTransaction;

UChar writeBuffer[3];

UChar readBuffer[2];

Bool transferOK;

i2cTransaction.slaveAddress = 0x50; /* 7-bit peripheral slave address */
i2cTransaction.writeBuf = writeBuffer; /* Buffer to be written */
i2cTransaction.writeCount = 3; /* Number of bytes to be written */
i2cTransaction.readBuf = readBuffer; /* Buffer to be read */
i2cTransaction.readCount = 2; /* Number of bytes to be read */

i2c¢Transaction.arg = someOptionalArgument;

/* I2C_transfers will always return successful */

I2C transfer(i2c, &i2cTransaction) ; /* Perform I2C transfer */
5.6.6.5 Queuing Multiple I°C Transactions
Using the callback mode, you can queue up multiple 1°C transactions. However, each 12C transfer must
use a unigue instance of an 12C_Transaction data structure. In other words, it is not possible to
reschedule an 12C_Transaction structure more than once. This also implies that the application must
make sure the [2C_Transaction isn't reused until it knows that the I2C_Transaction is available again.
62 TI-RTOS Drivers SPRUHD4|—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

1,

TeEXAs
INSTRUMENTS

www.ti.com 12C Driver

The following code posts a Semaphore after the last I2C_Transaction has completed. This is done by
passing the Semaphore’s handle through the 12C_Transaction data structure and evaluating it in the
UserCallbackFxn.

Void UserCallbackFxn (I2C Handle handle, I2C Transaction *msg, Bool transfer) {

if (msg->arg != NULL) {
Semaphore post ((Semaphore Handle) (msg->arg)) ;
}

}

Void taskfxn(arg0, argl) ({
I2C Transaction i2cTransaction0;
I2C Transaction i2cTransactionl;
I2C Transaction i2cTransaction2;

/* Set up i2cTransaction0/1/2 here */

i2cTransaction0.arg

= NULL;
i2cTransactionl.arg = NULL;
i2cTransaction2.arg = semaphoreHandle;

/* Start and queue up the I2C transactions */
I2C transfer(i2c, &i2cTransactionoO) ;
I2C transfer(i2c, &i2cTransactionl) ;
I2C transfer(i2c, &i2cTransaction2);

/* Do other optional code here */

/* Pend on the I2C transactions to have completed */
Semaphore pend (semaphoreHandle) ;

5.6.7 Instrumentation

The instrumented 12C library contains Log_print() statements that help to debug I1°C transfers. The I1°C
driver logs the following actions using the Log_print() APIs provided by SYS/BIOS:
® 12C object opened or closed.
® Data written or read in the interrupt handler.
® Transfer results.
Logging is controlled by the Diags_ USER1 and Diags_ USER2 masks. Diags_ USER1 is for general
information and Diags_USER?2 is for more detailed information. Diags_ USER?2 provides detailed logs
intended to help determine where a problem may lie in the 1°C transaction. This level of diagnostics will
generate a significant amount of Log entries. Use this mask when granular transfer details are needed.
The I2C driver provides ROV information through the 12C module. All 12Cs that have been created are
displayed by their base address and show the following information:
® Basic parameters:

— objectAddress: Address of the 12c object.

— baseAddress: Base address of the peripheral being used.

— mode: Current state of the 12C controller (Idle, Write, Read, or Error).

— slaveAddress: The 12C address of the peripheral with which the 1°C controller communicates.

5.6.8 Examples
See the TI-RTOS Getting Started Guide for your device family for a list of examples that use this driver.
SPRUHD4I—March 2015 TI-RTOS Drivers 63

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

12S Driver

13 TEXAS
INSTRUMENTS

www.ti.com

5.7

IS Driver

The 12S driver facilitates the use of Inter-IC Sound (12S), which is used to connect digital audio devices
so that audio signals can be communicated between devices. The I°S driver simplifies reading and
writing to any of the Multichannel Audio Serial Port (McASP) peripherals on the board with Receive and
Transmit support. These include blocking, non-blocking, read and write characters on the MCASP
peripheral.

5.7.1 Static Configuration
See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the
instrumented driver libraries, which are helpful in debugging.
To enable this driver, add the following statement to your application’s *.cfg file.
TIRTOS.usel2S = true;
5.7.2 Runtime Configuration
The board's I°S peripheral and pins must be configured before initializing an 1°S instance.
As the overview in Section 5.2.2 indicates, the 12S driver requires the application to initialize board-
specific settings and provide the 12S driver with the I2S_config structure.
5.7.2.1 Board-Specific Configuration
The <board>.c files contain a <board>_initl2S() function that initializes the board-specific 12S peripheral
settings. This function also calls 12S_init() to initialize the 12S driver.
5.7.2.2 12S_Params Structure
The 12S_Params structure may be used to override the default settings for an I12S instance you are
creating. The params in the structure must be set before calling 12S_open().
The structure has the following fields:
typedef struct I2S Params {
I2S OpMode operationMode;
uint32 t samplingFrequency; /* in samples/second, default = 16000 */
unsigned char slotLength; /* default = 16 */
unsigned char bitsPerSample; /* default = 16 */
unsigned char numChannels; /* Mono/Stereo */
I2S DataMode readMode; /* mode for all read calls */
I2S Callback readCallback; /* pointer to read callback */
uint32 t readTimeout;
I2S DataMode writeMode; /* mode for all write calls */
I2S Callback writeCallback; /* pointer to write callback */
uint32 t writeTimeout;
void * customParams;
} I2S Params;
64 TI-RTOS Drivers SPRUHDA4l—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com 12S Driver

5.7.3 1S Modes

The I°S operation mode determines whether transmit and/or receive modes are enabled. The mode is
specified with one of the following constants:

® |2S_OPMODE_TX_ONLY: Enable transmit only.
® |2S_OPMODE_RX_ONLY: Enable receive only.
® |2S_OPMODE_TX_RX_SYNC: Enable both transmit and receive.

A separate data mode may be specified for read calls and write calls. The available modes are:

® |2S_MODE_CALLBACK: This mode is non-blocking. Calls to read or write return immediately. When
the transfer is finished, the configured callback function is called.

® |2S_MODE_ISSUERECLAIM: Call 12S_readlssue() and I12S_writelssue() to queue buffers to the 12S.
12S_readReclaim() blocks until a buffer of data is available. 12S_writeReclaim() blocks until a buffer
of data has been issued and the descriptor can be returned back to the caller.

5.7.4 APIs
In order to use the 12S module APIs, the 12S.h header file should be included in an application as follows:

#include <ti/drivers/I2S.h>

The following are the 1°S APIs:

® |2S_init() initializes the I°S module.

® 12S_Params_init() initializes an 12S_Params data structure.

® 12S_open() initializes a given 1°S instance.

® 12S_close() deinitializes a given 1°S instance.

® 12S_control() performs implementation-specific features on a given 1°s peripheral.
® 12S_read() queues a buffer for reading from the peripheral.

® 12S_readlssueFxn() queues a buffer for reading from the peripheral.

® 12S_readReclaimFxn() retrieves a received buffer of data from the peripheral.
® 12S_write() queues a buffer for writing from the peripheral.

® 12S_writelssueFxn() queues a buffer for writing from the peripheral.

® 12S_writeReclaimFxn() retrieves a sent buffer of data from the peripheral.

For details, see the Doxygen help by opening <tirtos installs\docs\doxygen\html\index.html.
(The CDOC help provides information about configuring the driver, but no information about the APIs.)

SPRUHD4l—March 2015 TI-RTOS Drivers 65
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

12S Driver www.ti.com

574.1

5.7.4.2

Opening the I12S driver
To open a 12S driver instance, initialize a I12S_Params object and specify the desired parameters.

I2S Handle handle;
I2S_Params params;
I2SCC3200DMA_SerialPinParams customParams;

I2S Params_init (¶ms) ;
params.operationMode = I2S MODE TX RX SYNC;
/* Change other params as required */

handle = I2S open(someI2S configIndexValue, ¶ms) ;
if (!handle) {

System printf ("I2S did not open");
}

Writing Data

The following example calls 12S_write() to write to an 1S driver instance that has been opened. It first
queues up two buffers of text. Within an infinite loop, it then calls I12S_writeReclaim to retrieve a buffer.,
prints the size of the buffer retrieved, and re-queues the buffer.

const unsigned char hello[] = "Hello World\n";
const unsigned char hellol[] = "Hello Worldl\n";
I2S BufDesc writeBufferl;

I2S BufDesc writeBuffer2;

I2S BufDesc *pDesc = NULL;

writeBufferl.bufPtr = &hello;
writeBufferl.bufSize = sizeof (hello);
writeBuffer2.bufPtr = &hellol;

writeBuffer2.bufSize sizeof (hellol) ;

ret I2S write(handle, &writeBufferl);
ret = I2S write(handle, &writeBuffer2);

while (1)
{
ret = I2S writeReclaim(handle, &pDesc) ;
System printf ("The I2S wrote %d bytes\n", ret);
pDesc->bufPtr = &hello;
pDesc->bufSize = sizeof (hello) ;
ret = I2S write(handle, pDesc) ;

66

TI-RTOS Drivers SPRUHD4l—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com

12S Driver

5.7.4.3 Reading Data

The following example calls I12S_read() to queue a buffer for reading from an 12S driver instance. It first
queues up two buffers of text. Within an infinite loop, it then calls I12S_readReclaim to queue a buffer and

reads the buffer.

unsigned char rxBuffer[20];
unsigned char rxBufferl[20];

I2S BufDesc
I2S BufDesc
I2S BufDesc

readBufferl.

readBufferl;
readBuffer2;
*pDesc = NULL;

bufbPtr = &rxBuffer;

readBufferl.bufSize = 20;
readBuffer2.bufPtr = &rxBufferl;
readBuffer2.bufSize = 20;

ret = I2S read(handle, &readBufferl);
ret = I2S read(handle, &readBuffer2);

while (1)

{

ret = I2S readReclaim(handle, &pDesc) ;
System printf ("The I2S read %d bytes\n", ret);

pDesc->bufPtr = &rxBuffer;
pDesc->bufSize = 20;
ret = I2S read(handle, pDesc);

5.7.5 Examples

See the TI-RTOS Getting Started Guide for your device family for a list of examples that use this driver.

SPRUHD4l—March 2015
Submit Documentation Feedback

TI-RTOS Drivers

67

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

PWM Driver www.ti.com

5.8

5.8.1

5.8.2

5.8.2.1

5.8.2.2

5.8.3

PWM Driver

The PWM module facilitates the generation of Pulse Width Modulated signals via simple and portable
APIs. The PWM driver is designed such that a driver instance generates a single waveform. This section
assumes that you have an understanding of Pulse Width Modulation techniques.

Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the
instrumented driver libraries, which are helpful in debugging.

To enable this driver, add the following statement to your application’s *.cfg file.

TIRTOS.usePWM = true;

Runtime Configuration
As the overview in Section 5.2.2 indicates, the PWM driver requires the application to initialize board-
specific settings and provide the PWM driver with the PWM__config structure.
Board-Specific Configuration
The <board>.c files contain a <board>_initPWM() function that initializes the board-specific PWM
peripheral settings. This function also calls PWM _init() to initialize the PWM driver.
PWM_config Structure

The <board>.c file also declares the PWM_ config structure. This structure must be provided to the PWM
driver. It must be initialized before the PWM_init() function is called and cannot be changed afterwards.

For details about the individual fields of this structure, see the Doxygen help by opening
<tirtos_install>\docs\doxygen\html\index.html. (The CDOC help provides information about
configuring the driver, but no information about the APIs.)

APIs
To use the PWM module APIs, the PWM.h header file should be included in an application as follows:
#include <ti/drivers/PWM.h>
The following are the PWM APIs:
® PWM_init() initializes the PWM module.
® PWM_Params_init() initializes an PWM_Params data structure.
® PWM_open() initializes a given PWM instance.
® PWM_close() deinitializes a given PWM instance.
® PWM_control() performs implementation-specific features to a given PWM peripheral.
®* PWM_getPeriodCounts() returns the PWM period in timer ticks.
® PWM_getPeriodMicroSecs() returns the PWM period in microseconds.
®* PWM_setDuty() sets a PWM instances duty cycle.

For details, see the Doxygen help by opening <tirtos installs\docs\doxygen\html\index.html.
(The CDOC help provides information about configuring the driver, but no information about the APIs.)

68

TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com PWM Driver

5.8.4

5.8.4.1

Usage

The application needs to supply the following structures in order to set up the framework for the driver:
® PWM_Params specifies the period, units in which the duty is specified and the PWM output polarity.
See Section 5.8.4.1.

PWM Parameters

The PWM_Params structure is used to initialize a PWM driver instance with the PWM_open() function
call. Before opening the driver, the desired PWM period should be specified set in the PWM_Params.
The period must be specified in microseconds. Additionally, the PWM output polarity and the duty mode
should also be configured as desired.

typedef struct PWM_Params {

uint32 t period; /* PWM period in microseconds */
PWM DutyMode dutyMode; /* Units which duty is specified */
PWM_Polarity polarity; /* Set duty active high or active low */

} PWM_Params;

5.85 PWM Modes
The PWM operating mode determines the units in which the duty specified when calling PWM_setDuty().
The PWM driver supports three modes of operation:
®* PWM_DUTY_COUNTS: The duty is specified in PWM timer counts.
®* PWM_DUTY_TIME: The duty is specified in microseconds.
®* PWM_DUTY_SCALAR: The duty is an integer scaled to the period, where 0 corresponds to a duty
of 0% and 65535 corresponds to 100% duty.
The mode is determined by the PWM_DutyMode field within PWM_Params data structure. The
PWM_Params default for this field is PWM_DUTY_TIME mode. Once opened, the only way to change
the operating mode is to close and re-open the PWM instance with a new mode.
5.8.5.1 Opening the PWM driver
To open a PWM driver instance, initialize a PWM_Params object and specify the desired PWM period.
Additionally, if a duty mode other than PWM_DUTY_TIME (default) is desired, specify it in the
PWM_Params before opening the driver instance.
PWM_Handle handle;
PWM_ Params params;
uint8 t pwmOutputNumber = 0;
PWM Params_init (¶ms) ;
params.period = 20000; // Period in microseconds
params.dutyMode = PWM _DUTY COUNTS; // Set PWM duty mode
handle = PWM open (Board PWMO, ¶ms) ;
if (handle == NULL) {
/* Error opening PWM */
}
PWM_setDuty (handle, 3000); // Set a duty cycle of 3000 PWM timer counts
SPRUHD4|—March 2015 TI-RTOS Drivers 69

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS

INSTRUMENTS
PWM Driver www.ti.com
5.8.6 Instrumentation
The instrumented PWM library contains Log_print() statements that help to debug PWM driver calls. The
PWM driver logs the following actions using the Log_print() APIs provided by SYS/BIOS:
® PWM object opened or closed.
® The duty cycle of a PWM output has been changed.
Logging is controlled by the Diags_ USER1 and Diags_ USER2 masks. Diags_ USER1 is for general
information and Diags_USER?2 is for more detailed information. Diags_ USER?2 provides detailed logs
intended to help determine if a problem has occurred while changing a duty cycle. This level of
diagnostics generates a significant number of Log entries. Use this mask when granular details are
needed.
The PWM driver provides ROV information through the PWM module. All PWM instances created are
displayed by their base address and show the following information:
® Basic parameters:
— objectAddress: Address of the PWM object.
— baseAddress: Base address of the peripheral being used.
— functionTable: PWM function table address.
5.8.7 Examples
See the TI-RTOS Getting Started Guide for your device family for a list of examples that use this driver.
70 TI-RTOS Drivers SPRUHD4|—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com SDSPI Driver

5.9

5.9.1

5.9.2

59.21

5.9.2.2

SDSPI Driver

The SDSPI FatFs driver is used to communicate with SD (Secure Digital) cards via SPI (Serial Peripheral
Interface).

The SDSPI driver is a FatFs driver module for the FatFs module provided in SYS/BIOS. With the
exception of the standard TI-RTOS driver APIs—SDSPI_open(), SDSPI_close(), and SDSPI_init()—the
SDSPI driver is exclusively used by FatFs module to handle the low-level hardware communications. See
Chapter 8, "Using the FatFs File System Drivers" for usage guidelines.

The SDSPI driver only supports one SSI (SPI) peripheral at a given time. It does not utilize interrupts.

The SDSPI driver is polling based for performance reasons and due the relatively high SPI bus bit rate.
This means it does not utilize the SPI's peripheral interrupts, and it consumes the entire CPU time when
communicating with the SPI bus. Data transfers to or from the SD card are typically 512 bytes, which
could take a significant amount of time to complete. During this time, only higher priority Tasks, Swis, and
Hwis can preempt Tasks making calls that use the FatFs.

Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the
instrumented driver libraries, which are helpful in debugging.

To enable this driver, add the following statements to your application’s *.cfg file.

var FatFs = xdc.useModule('ti.sysbios.fatfs.FatFS');
TIRTOS.useSDSPI = true;

Runtime Configuration

As the overview in Section 5.2.2 indicates, the SDSPI driver requires the application to initialize board-
specific portions of the SDSPI and provide the SDSPI driver with the SDSPI_config structure.

Board-Specific Configuration

The <board>.c files contain a <board>_initSDSPI() function that must be called to initialize the board-
specific SDSPI peripheral settings. This function also calls the SDSPI_init() to initialize the SDSPI driver.

SDSPI_config Structure

The <board>.c file also declare the SDSPI_config structure. This structure must be provided to the
SDSPI driver. It must be initialized before the SDSPI_init() function is called and cannot be changed
afterwards.

For details about the individual fields of this structure, see the Doxygen help by opening
<tirtos_install>\docs\doxygen\html\index.html. (The CDOC help provides information about
configuring the driver, but no information about the APIs.)

SPRUHD4l—March 2015 TI-RTOS Drivers 71
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS

INSTRUMENTS

SDSPI Driver www.ti.com
5.9.3 APIs

In order to use the SDSPI module APIs, include the SDSPI header file in an application as follows:

#include <ti/drivers/SDSPI.h>

The following are the SDSPI APlIs:

® SDSPL_init() sets up the specified SPI and GPIO pins for operation.

® SDSPI_open() registers the SDSPI driver with FatFs and mounts the FatFs file system.

® SDSPI_close() unmounts the file system and unregisters the SDSPI driver from FatFs.

® SDSPI_Params_init() initializes a SDSPI_Params structure to its defaults.

For detalls, see the Doxygen help by opening <tirtos installs>\docs\doxygen\html\index.html.

(The CDOC help provides information about configuring the driver, but no information about the APIs.)
594 Usage

Before any FatFs or C I/O APIs can be used, the application needs to open the SDSPI driver. The

SDSPI_open() function ensures that the SDSPI disk functions get registered with the FatFs module that

subsequently mounts the FatFs volume to that particular drive.

SDSPI Handle sdspiHandle;

SDSPI_Params sdspiParams;

UInt peripheralNum = 0; /* Such as SPIQ */

UInt FatFsDriveNum = O;

SDSPI_Params_init (&sdspiParams) ;

sdspiHandle = SDSPI open (peripheralNum, FatFsDriveNum, &sdspiParams) ;

if (sdspiHandle == NULL)

System_abort ("Error opening SDSPI\n") ;

}

Similarly, the SDSPI_close() function unmounts the FatFs volume and unregisters SDSPI disk functions.

SDSPI close(sdspiHandle) ;

Note that it is up to the application to ensure the no FatFs or C I/O APIs are called before the SDSPI

driver has been opened or after the SDSPI driver has been closed.
595 Instrumentation

The SDSPI driver does not make any Log calls.

The SDSPI driver provides the following information to the ROV tool through the SDSPI module.

® Basic parameters:

— baseAddress. Base address of the peripheral being used to access the SD card.

— CardType. The SD card type detected during the disk initialization phase. The card type can be
Multi-media Memory Card (MMC), Standard SDCard (SDSC), High Capacity SDCard (SDHC),
or NOCARD for an unrecognized card.

— diskState. Current status of the SD card.

5.9.6 Examples
See the TI-RTOS Getting Started Guide for your device family for a list of examples that use this driver.
72 TI-RTOS Drivers SPRUHDA4l—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com SPI Driver

5.10

5.10.1

5.10.2

SPI Driver

The Serial Peripheral Interface (SPI) driver is a generic, full-duplex driver that transmits and receives data
on a SPI bus. SPI is sometimes called SSI (Synchronous Serial Interface).

The SPI protocol defines the format of a data transfer over the SPI bus, but it leaves flow control, data
formatting, and handshaking mechanisms to higher-level software layers.
Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the
instrumented driver libraries, which are helpful in debugging.

To enable this driver, add the following statement to your application’s *.cfg file.

TIRTOS.useSPI = true;

Runtime Configuration

As the overview in Section 5.2.2 indicates, the SPI driver requires the application to initialize board-
specific portions of the SPI and to provide the SPI driver with the SPI_config structure.

5.10.2.1 Board-Specific Configuration

The <board>.c files contain a <board>_initSPI() function that must be called to initialize the board-specific
SPI peripheral settings. This function also calls the SPI_init() to initialize the SPI driver.

5.10.2.2 SPI_config Structure

5.10.3

The <board>.c file also declares the SPI_config structure. This structure must be provided to the SPI
driver. It must be initialized before the SPI_init() function is called and cannot be changed afterwards.

For details about the individual fields of this structure, see the Doxygen help by opening
<tirtos_install>\docs\doxygen\html\index.html. (The CDOC help provides information about
configuring the driver, but no information about the APIs.)

APIs
In order to use the SPI module APIs, the SP1.h header file should be included in an application as follows:

#include <ti/drivers/SPI.h>

The following are the SPI APlIs:

® SPL_init() initializes the SPI module.

® SPI_Params_init() initializes a SPI_Params data structure to default values.
® SPI_open() initializes a given SPI peripheral.

® SPI_close() deinitializes a given SPI peripheral.

® SPI_transfer() handles the SPI transfers for SYS/BIOS.

The SPI_transfer() API can be called only from a Task context when used in SPI_ MODE_BLOCKING. It
requires a SPI_Transaction structure that specifies the location of the write and read buffer and the
number of SPI frames to be transmitted/received. In SPI frame formats, data is sent in full-duplex mode.

SPRUHD4l—March 2015 TI-RTOS Drivers 73
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

SPI Driver www.ti.com

5.10.4

For detalls, see the Doxygen help by opening <tirtos installs\docs\doxygen\html\index.html.
(The CDOC help provides information about configuring the driver, but no information about the APIs.)

Usage

The application needs to supply the following structures in order to set up the framework for the driver:
® SPI_Params specifies the transfer mode and any callback function to be used. See Section 5.10.4.1.
® SPI_Transaction specifies details about a transfer to be performed. See Section 5.10.4.2.

® SPI_Callback specifies a function to be used if you are using callback mode. See Section 5.10.4.3.

5.10.4.1 SPI Parameters

The SPI_Params structure is used with the SPI_open() function call.

If the transferMode is set to SPI_MODE_BLOCKING, the transferCallback argument is ignored. If
transferMode is set to SPI_ MODE_CALLBACK, a user-defined callback function must be supplied. The
mode parameter determines whether the SPI operates in master or slave mode. The desired SPI bit
transfer rate, frame data size, and frame format are specified with bitRate, dataSize and frameFormat
respectively.

typedef struct SPI_ Params {

SPI TransferMode transferMode; /* Blocking or Callback mode */
SPI CallbackFxn transferCallbackFxn; /* Callback function pointer */
SPI Mode mode ; /* Master or Slave mode */

UInt bitRate; /* SPI bit rate in Hz */

UInt dataSize; /* SPI data frame size in bits */
SPI_FrameFormat frameFormat; /* SPI frame format */

} SPI_Params;

5.10.4.2 SPI Frame Formats, Transactions, and Data Sizes

The SPI driver can configure the device's SPI peripheral with various SPI frameFormat options: SPI (with
various polarity and phase settings), Tl, and Micro-wire.

The smallest single unit of data transmitted onto the SPI bus is called a SPI frame and is of size dataSize.
A series of SPI frames transmitted/received on a SPI bus is known as a SPI transaction. A SPI_transfer()
of a SPI transaction is performed atomically.

typedef struct SPI Transaction {

Ulnt count; /* Number of frames for this transaction */

Ptr txBuf; /* Ptr to a buffer with data to be transmitted */
Ptr rxBuf; /* Ptr to a buffer to receive data */

UArg arg; /* Argument to be passed to the callback function */

} SPI_Transaction;

The txBuf and rxBuf parameters are both pointers to data buffers. If txBuf is NULL, the driver sends SPI
frames with all data bits set to 0. If rxBuf is NULL, the driver discards all SPI frames received.

When the SPI is opened, the dataSize value determines the element types of txBuf and rxBuf. If the
dataSize is from 4 to 8 bits, the driver assumes the data buffers are of type UChar (unsigned char). If the
dataSize is larger than 8 bits, the driver assumes the data buffers are of type UShort (unsigned short).

The optional arg variable can only be used when the SPI driver has been opened in callback mode. This
variable is used to pass a user-defined value into the user-defined callback function.

74

TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com SPI Driver

Specifics about SPI frame formatting and data sizes are provided in device-specific data sheets and
technical reference manuals.

5.10.4.3 SPI Callback Function Prototype

5.10.5

This typedef defines the function prototype for the SPI driver's callback function for callback mode:
typedef Void (*SPI_Callback) (SPI_Handle, SPI Transaction *);

When the SPI driver calls this function, it supplies the associated SPI_Handle and a pointer to the
SPI_Transaction that just completed. There is no formal definition for what constitutes a successful SPI
transaction, so every callback is considered a successful transaction. The application or middleware
should examine the data to determine if the transaction met application-specific requirements.

Callback and Blocking Modes

The SPI driver supports two modes of operation: blocking and callback modes. The mode is determined
by the mode parameter in the SPI_Params data structure used when the SPI driver is opened. If no

SPI_Params structure is specified, the SPI driver defaults to blocking mode. Once a SPI driver is opened,
the only way to change the operation mode is to close and re-open the SPI instance with the new mode.

5.10.5.1 Opening a SPI Driver in Blocking Mode

By default, the SPI driver operates in blocking mode. In blocking mode, a Task's code execution is
blocked until a SPI transaction has completed. This ensures that only one SPI transaction operates at a
given time. Other tasks requesting SPI transactions while a transaction is currently taking place are also
placed into a blocked state and are executed in the order in which they were received.

SPI_Handle spi;
Ulnt peripheralNum = 0; /* Such as SPI0 */
SPI Params spiParams;

SPI_Params_init (&spiParams) ;
spiParams.transferMode = SPI_MODE_ BLOCKING;
spiParams.transferCallbackFxn = NULL;

spi = SPI open(peripheralNum, &spiParams) ;
if (spi == NULL) {

/* Error opening SPI */
}

Blocking mode is not supported in the execution context of a Swi or Hwi.

If no SPI_Params structure is passed to SPI_open(), default values are used. If the open call is
successful, it returns a non-NULL value.

SPRUHD4l—March 2015 TI-RTOS Drivers 75
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

SPI Driver www.ti.com

5.10.5.2 Opening a SPI Driver in Callback Mode

5.10.6

In callback mode, a SPI transaction functions asynchronously, which means that it does not block code
execution. After a SPI transaction has been completed, the SPI driver calls a user-provided hook
function.

SPI_Handle spi;
Ulnt peripheralNum = 0; /* Such as SPI0 */
SPI_Params spiParams;

SPI Params_init (&spiParams) ;
spiParams.transferMode = SPI_MODE CALLBACK;
spiParams.transferCallbackFxn = UserCallbackFxn;

spi = SPI open(peripheralNum, &spiParams) ;

if (spi == NULL) {
/* Error opening SPI */
}

Callback mode is supported in the execution context of Tasks, Swis and Hwis. However, if a SPI
transaction is requested while a transaction is taking place, the SPI_transfer() returns FALSE.
SPI Transactions

SPI_transfer() always performs full-duplex SPI transactions. This means the SPI simultaneously receives
data as it transmits data. The application is responsible for formatting the data to be transmitted as well
as determining whether the data received is meaningful. The following code snippets perform SPI
transactions.

Transferring n 4-8 bit SPI frames:

SPI_Transaction spiTransaction;

UChar transmitBuffer [n];
UChar receiveBuffer [n];
Bool transferOK;

SPI Params_init (&spiParams) ;
spiParams.dataSize = 6; /* dataSize can range from 4 to 8 bits */
spi = SPI open(peripheralNum, &spiParams) ;

spiTransaction.count = n;

spiTransaction.txBuf = transmitBuffer;
spiTransaction.rxBuf = receiveBuffer;

transferOK = SPI transfer(spi, &spiTransaction);

if (!transferOK) {
/* Error in SPI transfer or transfer is already in progress */

76

TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com SPI Driver

5.10.7

Transferring n 9-16 bit SPI frames:

SPI Transaction spiTransaction;

UShort transmitBuffer [n];
UShort receiveBuffer [n];
Bool transferOK;

SPI_Params_init (&spiParams) ;
spiParams.dataSize = 12; /* dataSize can range from 9 to 16 bits */
spi = SPI open(peripheralNum, &spiParams) ;

spiTransaction.count = n;

spiTransaction.txBuf = transmitBuffer;
spiTransaction.rxBuf = receiveBuffer;

transferOK = SPI transfer(spi, &spiTransaction);

if (!transferOK) {
/* Error in SPI transfer or transfer is already in progress */

Master/Slave Modes

This SPI driver functions in both SPI master and SPI slave modes. Logically, the implementation is
identical; however the difference between these two modes is driven by hardware. As a SPI master, the
peripheral is in control of the clock signal and therefore will commence communications to the SPI slave
immediately. As a SPI slave, the SPI driver prepares the peripheral to transmit and receive data in a way
such that the peripheral is ready to transfer data when the SPI master initiates a transaction.

Asserting on Chip Select

The SPI protocol requires that the SPI master asserts a SPI slave's chip select pin prior starting a SPI
transaction. While this protocol is generally followed, various types of SPI peripherals have different
timing requirements as to when and for how long the chip select pin must remain asserted for a SPI
transaction.

Commonly, the SPI master uses a hardware chip select to assert and de-assert the SPI slave for every
data frame. In other cases, a SPI slave imposes the requirement of asserting the chip select over several
SPI data frames. This is generally accomplished by using a regular, general-purpose output pin. Due to
the complexity of such SPI peripheral implementations, the SPI driver provided with TI-RTOS has been
designed to operate transparently to the SPI chip select. When the hardware chip select is used, the
peripheral automatically selects/enables the peripheral. When using a software chip select, the
application needs to handle the proper chip select and pin configuration.

® Hardware chip select. No additional action by the application is required.

® Software chip select. The application needs to handle the chip select assertion and de-assertion
for the proper SPI peripheral.

Note that the implementation of hardware chip select is device-dependent. MSP43x does not support the
hardware chip select feature. Tiva devices performs hardware chip select only when pin-muxed out.

SPRUHD4l—March 2015 TI-RTOS Drivers 77
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

SPI Driver www.ti.com

5.10.8

5.10.9

Instrumentation

The instrumented SPI library contains Log_print() and Log_error() statements that help debug SPI
transfers. The SPI driver logs the following actions:

® SPI object opened or closed

® DMA transfer configurations enabled
® SPlinterrupt occurred

® |Initialization error occurred

® Semaphore pend or post

Logging is controlled by the Diags_ USER1 and Diags_ USER2 masks. Diags_ USER1 is for general
information and Diags_USER?2 is for more detailed information. Diags_ USER?2 provides detailed logs
intended to help determine where a problem may lie in the SPI transactions. This level of diagnostics will
generate a significant amount of Log entries. Use this mask when granular transfer details are needed.

The SPI driver provides ROV information through the SPI module. All SPI instances are shown by the
address of the SPI handle.

® Basic parameters:
— SPIl handle
— base address

— SPI function table

Examples

See the TI-RTOS Getting Started Guide for your device family for a list of examples that use this driver.

78

TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS

INSTRUMENTS
www.ti.com SPIMessageQTransport
5.11 SPIMessageQTransport
This MessageQ transport allows point to point communication over an SSI (Synchronous Serial
Interface) using the Serial Peripheral Interface (SPI) driver (see Section 5.10). It uses the MessageQ
modules, which is part of the Inter-Processor Communication (IPC) component.
To use this transport, there must be a master and slave processor. The master drives the SPI link. The
slave transport must be created and running before the master attempts to communicate to the master.
You can delay creation of the master by waiting to call SPIMessageQTransport_create() on the master
processor or using the clockStartDelay parameter when creating the transport instance.
5.11.1 Static Configuration
SPIMessageQTransport currently supports only dynamic creation of transport instances; you currently
cannot create a static transport instance in the .cfg file.
5.11.2 Runtime Configuration
The application must first initialize the SPI peripherals by calling <board>_initSPI() on both the master
and slave processors. This function performs pin-muxing and calls SPI_init() to initialize the driver.
After the SPI driver is initialized on both processors, the application should call
SPIMessageQTransport_create() on both processors to create an instance of the transport and open the
SPI drivers. For example, this code creates a SPIMessageQTransport instance:
/* Create the transport to the slave M3 */
SPIMessageQTransport Params init (&transportParams) ;
transportParams.maxMsgSize = BLOCKSIZE;
transportParams.heap = (IHeap Handle) (heapHandle) ;
transportParams.spilndex = 0;
transportParams.clockRate = 1;
transportParams.spiBitRate = 6000000;
transportParams.master = TRUE;
transportParams.priority = SPIMessageQTransport Priority NORMAL;
handle = SPIMessageQTransport create (SLAVEM3PROCID, &transportParams, &eb);
if (handle == NULL) {
System_abort ("SPIMessageQTransport create failed\n");
}
The application also needs to set up a MessageQ instance to use the transport.
5.11.3 Error Conditions
During transport startup, the master and slave exchange a handshake. Any MessageQ_put() calls to the
remote processor fail until this handshake is completed.
Asynchronous errors can occur when using the transport. When one of these occur, the this transport
calls the any errFxn that was specified by the SPIMessageQTransport_setErrFxn() API. The following list
shows the errors that can occur and what information is passed in arguments to the errFxn.
® Bad Msg. The transport received a badly formed message.
— Reason: SPIMessageQTransport_Reason_PHYSICALERR
— Handle: Transport handle
— Ptr: pointer to the received msg
— UArg: SPIMessageQTransport_Failure_ BADMSG
SPRUHD4|—March 2015 TI-RTOS Drivers 79

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

SPIMessageQTransport www.ti.com

® Failed Checksum. The transport received a message with a bad checksum.
— Reason: SPIMessageQTransport_Reason_PHYSICALERR
— Handle: Transport handle
— Ptr: pointer to the received msg
— UArg: SPIMessageQTransport_Failure BADCHECKSUM

® Allocation failure. The allocation failed when the transport tried to copy incoming messages into an
allocated message.

— Reason: SPIMessageQTransport_Reason_FAILEDALLOC
— Handle: Transport handle
— Ptr: NULL
— UArg: heapld used to try to allocate the message
® Failed transmit. The transport failed to transmit a message.
— Reason: SPIMessageQTransport_Reason_FAILEDPUT
— Handle: Transport handle
— Ptr: pointer to the msg that was not transmitted. The msg will be freed after the errFxn is called.

— UArg: SPIMessageQTransport_Failure_ TRANSFER

5.11.4 Examples

See the TI-RTOS Getting Started Guide for your device family for a list of examples that use this driver.

80 TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com UART Driver

5.12

5.12.1

5.12.2

UART Driver

A UART is used to translate data between the chip and a serial port. The UART driver simplifies reading
and writing to any of the UART peripherals on the board with multiple modes of operation and
performance. These include blocking, non-blocking, and polling as well as text/binary mode, echo and
return characters.

Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the
instrumented driver libraries, which are helpful in debugging.

To enable this driver, add the following statement to your application’s *.cfg file.

TIRTOS.useUART = true;

Runtime Configuration

As the overview in Section 5.2.2 indicates, the UART driver requires the application to initialize board-
specific portions of the UART and provide the UART driver with the UART _config structure.

5.12.2.1 Board-Specific Configuration

The <board>.c files contain a <board>_initUART() function that must be called to initialize the board-
specific UART peripheral settings. This function also calls the UART _init() to initialize the UART driver.

5.12.2.2 UART_config Structure

5.12.3

The <board>.c file also declare the UART _config structure. This structure must be provided to the UART
driver. It must be initialized before the UART _init() function is called and cannot be changed afterwards.

For details about the individual fields of this structure, see the Doxygen help by opening
<tirtos_install>\docs\doxygen\html\index.html. (The CDOC help provides information about
configuring the driver, but no information about the APIs.)

APIs

In order to use the UART module APIs, the UART header file should be included in an application as
follows:

#include <ti/drivers/UART.h>
The following are the UART APIs:
® UART_init() initializes the UART module.

® UART_Params_init () initializes the UART_Params struct to its defaults for use in calls to
UART _open().

® UART_open() opens a UART instance.
® UART_close() closes a UART instance.
® UART_write() writes a buffer of characters to the UART.

® UART_writePolling() writes a buffer to the UART in the context of the call and returns when finished.

SPRUHD4l—March 2015 TI-RTOS Drivers 81
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

UART Driver www.ti.com

5.12.4

® UART_writeCancel() cancels the current write action and unblocks or make the callback.
® UART_read() reads a buffer of characters to the UART.
® UART_readPolling() reads a buffer to the UART in the context of the call and returns when finished.

® UART_readCancel() cancels the current read action and unblocks or make the callback.

For details, see the Doxygen help by opening <tirtos installs\docs\doxygen\html\index.html.
(The CDOC help provides information about configuring the driver, but no information about the APIs.)

Usage

The UART driver does not configure any board peripherals or pins; this must be completed before any
calls to the UART driver. The examples call Board_initUART(), which is mapped to a specific initUART()
function for the board. The board-specific initUART() functions are provided in the board .c and .h files.
For example, a sample UART setup is provided in the TMDXDOCKH52C1_initUART() function in the
TMDXDOCKH52C1.c file. This function sets up the peripheral and pins used by UARTO for operation
through the JTAG emulation connection (no extra hardware needed). The examples that use the UART
driver call the Board_initUART() function from within main().

Once the peripherals are set up, the application must initialize the UART driver by calling UART _init(). If
you add the provided board setup files to your project, you can call the Board_initUART() function within
main().

Once the UART has been initialized, you can open UART instances. Only one UART index can be used
at a time. If the index is already in use, the driver returns NULL and logs a warning. Opening a UART
requires four steps:

1. Create and initialize a UART_Params structure.

2. Fillin the desired parameters.

3. Call UART_open() passing in the index of the UART from the configuration structure and Params.
4

Save the UART handle that is returned by UART_open(). This handle will be used to read and write
to the UART you just created.

For example:

UART Handle uart;
UART Params uartParams;

Board initUART() ; // Calls UART init for you

/* Create a UART with data processing off. */
UART Params_init (&uartParams) ;
uartParams.writeDataMode = UART DATA BINARY;
uartParams.readDataMode = UART DATA BINARY;
uartParams.readReturnMode = UART RETURN FULL;
uartParams.readEcho = UART ECHO_OFF;

uart = UART open (Board UART, &uartParams) ;

Options for the writeMode and readMode parameters are UART_MODE_BLOCKING and
UART_MODE_CALLBACK.

® UART_MODE_BLOCKING uses a semaphore to block while data is being sent. The context of the
call must be a SYS/BIOS Task.

82

TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com UART Driver

5.12.5

® UART_MODE_CALLBACK is non-blocking and will return while data is being sent in the context of
a Hwi. The UART driver will call the callback function whenever a write or read finishes. In some
cases, the action might have been canceled or received a newline, so the number of bytes
sent/received are passed in. Your implementation of the callback function can use this information
as needed.

Options for the writeDataMode and readDataMode parameters are UART_MODE_BINARY and
UART_MODE_TEXT. If the data mode is UART_MODE_BINARY, the data is passed as is, without
processing. If the data mode is UART_MODE_TEXT, write actions add a return before a newline
character, and read actions replace a return with a newline. This effectively treats all device line endings
as LF and all host PC line endings as CRLF.

Options for the readReturnMode parameter are UART_RETURN_FULL and
UART_RETURN_NEWLINE. These determine when a read action unblocks or returns. If the return
mode is UART_RETURN_FULL, the read action unblocks or returns when the buffer is full. If the return
mode is UART_RETURN_NEWLINE, the read action unblocks or returns when a newline character is
read.

Options for the readEcho parameter are UART_ECHO_OFF and UART_ECHO_ON. This parameter
determines whether the driver echoes data back to the UART. When echo is turned on, each character
that is read by the target is written back independent of any write operations. If data is received in the
middle of a write and echo is turned on, the characters echoed back will be mixed in with the write data.

For details, see the Doxygen help by opening <tirtos installs\docs\doxygen\html\index.html.

UART DMA Driver for TivaC Devices

For TivaC devices, the UART driver can be configured to use DMA, if desired. The <board>.c file contains
configuration for both the DMA-based UART driver and the non-DMA-based UART driver. To use the
DMA-based UART driver, compile <board>.c with the preprocessor symbol TI_DRIVERS UARTDMA set
to 1. This can be set either in <board>.c by adding:

#define TI DRIVERS UART DMA 1

or, in the CCS project settings, under the compiler flags:

--define=TI DRIVERS UART DMA=1

Of the TI-RTOS UART examples, only the UART Echo example is suitable for using UART DMA.

The UART Console example calls scanf(), requiring the UART driver to inspect the data and return from
a UART _read() call when a newline character is received. The UART DMA driver does not examine input
or output data, so using UART DMA with the UART Console example causes the call to scanf(), which
calls UART _read(), to hang waiting for input.

The other UART example, UART Logging, calls UART_writePolling(), which does not use DMA,; only
UART_write() and UART _read() use DMA. Although the UART Echo example can be built to use UART
DMA, it is not an interesting use case, as it reads and writes only one character at a time.

SPRUHD4l—March 2015 TI-RTOS Drivers 83
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

UART Driver www.ti.com

5.12.6

5.12.7

UART DMA Driver for SimpleLink CC32xx Devices

For CC32xx devices, the UART driver can be configured to use DMA, if desired. The <board>.c file
contains configuration for both the DMA-based UART driver, and the non-DMA-based UART driver. To
use the DMA-based UART driver, compile <board>.c with the preprocessor symbol

TI_DRIVERS_ UARTDMA set to 1. This can be set either in <board>.c by adding:

#define TI_DRIVERS UART DMA 1

or, in the CCS project settings, under the compiler flags:

--define=TI DRIVERS UART DMA=1

Of the TI-RTOS UART examples, only the UART Echo example is suitable for using UART DMA.

The other UART example, UART Logging, calls UART_writePolling(), which does not use DMA; only
UART_write() and UART _read() use DMA. Although the UART Echo example can be built to use UART
DMA, it is not an interesting use case, as it reads and writes only one character at a time.

Instrumentation

The UART module provides instrumentation data both by making log calls and by sending data to the
ROV tool in CCS.

5.12.7.1 Logging

The UART driver is instrumented with Log events that can be viewed with UIA and RTOS Analyzer. Diags
masks can be turned on and off to provide granularity to the information that is logged.

Use Diags_USER1 to see general Log events such as success opening a UART, number of bytes read
or written, and warnings/errors during operation.

Use Diags_USER?2 to see more granularity when debugging. Each character read or written will be
logged as well as several other key events.

The UART driver makes log calls when the following actions occur:

® UART_open() success or failure

® UART_close() success

® UART interrupt triggered

® UART_write() finished

® Byte was written

® UART_read() finished

® Byte was read

® UART_ write() finished, canceled or timed out
® UART_read() finished, canceled or timed out

5.12.7.2 ROV

The UART driver provides ROV information through the UART module. All UARTSs that have been
created are displayed by their base address and show the following information:

® Configuration parameters:
— Base Address

84

TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS

INSTRUMENTS
www.ti.com UART Driver
— Write Mode
— Read Mode

— Write Timeout

— Read Timeout

— Write Data Mode

— Read Data Mode

— Read Return mode

— Read Echo
® Write buffer: Contents of the write buffer
® Read buffer: Contents of the read buffer

5.12.8 Examples

See the TI-RTOS Getting Started Guide for your device family for a list of examples that use this driver.

SPRUHD4l—March 2015 TI-RTOS Drivers 85
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS

INSTRUMENTS
USBMSCHFatFs Driver www.ti.com
5.13 USBMSCHFatFs Driver
The USBMSCHFatFs driver is a FatFs driver module that has been designed to be used by the FatFs
module that comes with SYS/BIOS. With the exception of the standard TI-RTOS driver APIs—_open(),
_close(), and _init()—the USBMSCHFatFs driver is exclusively used by FatFs module to handle
communications to a USB flash drive. See Chapter 8 for usage guidelines.
The USBMSCHFatFs driver is uses the USB Library, which is provided with TivaWare and MWare to
communicate with USB flash drives as a USB Mass Storage Class (MSC) host controller. Only one USB
flash drive connected directly to the USB controller at a time is supported.
Tasks that make FatFs calls can be preempted only by higher priority tasks, Swis, and Hwis.
5.13.1 Static Configuration
See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the
instrumented driver libraries, which are helpful in debugging.
To enable messages about this driver’s activity that feed into the RTOS Object View (ROV) tool, add the
following statement to your application’s *.cfg file.
var FatFs = xdc.useModule('ti.sysbios.fatfs.FatFS');
TIRTOS.useUSBMSCHFatFs = true;
5.13.2 Runtime Configuration

As the overview in Section 5.2.2 indicates, the USBMSCHFatFs driver requires the application to initialize
board-specific portions of the USBMSCHFatFs and provide the USBMSCHFatFs driver with the
USBMSCHFatFs_config structure.

5.13.2.1 Board-Specific Configuration

The <board>.c files contain a <board>_initUSBMSCHFatFs() function that must be called to initialize the
board-specific USBMSCHFatFs peripheral settings. This function also calls the USBMSCHFatFs_init()
to initialize the USBMSCHFatFs driver.

5.13.2.2 USBMSCHFatFs_config Structure

5.13.3

The <board>.c file also declare the USBMSCHFatFs_config structure. This structure must be provided
to the USBMSCHFatFs driver. It must be initialized before the USBMSCHFatFs_init() function is called
and cannot be changed afterwards.

For details about the individual fields of this structure, see the Doxygen help by opening
<tirtos_installs\docs\doxygen\html\index.html. (The CDOC help provides information about
configuring the driver, but no information about the APIs.)

APIs

In order to use the USBMSCHFatFs module APIs, the USBMSCHFatFs header file should be included
in an application as follows:

#include <ti/drivers/USBMSCHFatFs.h>

The following are the USBMSCHFatFs APls:

86

TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com USBMSCHFatFs Driver

5.13.4

® USBMSCHFatFs_init() initializes the USBMSCHFatFs data objects pointed by the driver’s config

structure.

® USBMSCHFatFs_open() registers the USBMSCHFatFs driver with FatFs and mounts the FatFs file
system.

® USBMSCHFatFs_close() unmounts the file system and unregisters the USBMSCHFatFs driver
from FatFs.

® USBMSCHFatFs_Params_init() initializes a USBMSCHFatFs_Params structure to its defaults.

® USBMSCHFatFs_waitForConnect() blocks a task’s execution until a USB flash drive was detected.

For details, see the Doxygen help by opening <tirtos installs\docs\doxygen\html\index.html.
(The CDOC help provides information about configuring the driver, but no information about the APIs.)

Usage

Before the FatFs APIs can be used, the application needs to open the USBMSCHFatFs driver. The
USBMSCHFatFs_open() function ensures that the USBMSCHFatFs disk functions get registered with
the FatFs module. The FatFs module then mounts the FatFs volume to that particular drive.

Internally, opening the USBMSCHFatFs driver creates a high-priority Task to service the USB library. The
default priority for this task is 15 and runs every 10 SYS/BIOS system ticks. You can change the priority
of this task using the USBMSCHFatFs_Params structure.

USBMSCHFatFs_Handle usbmschfatfsHandle;
USBMSCHFatFs_Params usbmschfatfsParams;
UInt peripheralNum 0; /* Such as USBO */
UInt FatFsDriveNum 0;

USBMSCHFatFs_ Params_init (&usbmschfatfsParams) ;

usbmschfatfsHandle =
USBMSCHFatFs_open (peripheralNum, FatFsDriveNum, &usbmschfatfsParams) ;
if (usbmschfatfsHandle == NULL) {

System_abort ("Error opening USBMSCHFatFs\n") ;

}

Similarly, the close() function unmounts the FatFs volume and unregisters the USBMSCHFatFs disk
functions.

USBMSCHFatFs_close (usbmschfatfsHandle) ;

The application must ensure the no FatFs or C I/O APlIs are called before the USBMSCHFatFs driver has
been opened or after the USBMSCHFatFs driver has been closed.

Although the USBMSCHFatFs driver may have been opened, there is a possibility that a USB flash drive
may not be present. To ensure that a Task will wait for a USB drive to be present, the USBMSCHFatFs
driver provides the USBMSCHFatFs_waitForConnect() function to block the Task’s execution until a
USB flash drive is detected.

SPRUHD4l—March 2015 TI-RTOS Drivers 87
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

USBMSCHFatFs Driver www.ti.com

5.13.5

5.13.6

Instrumentation

The USBMSCHFatFs driver logs the following actions using the Log_print() APIs provided by SYS/BIOS:

USB MSC device connected or disconnected.
USB drive initialized.

USB drive read or failed to read.

USB drive written to or failed to write.

USB status OK or error.

Logging is controlled by the Diags_ USER1 and Diags_ USER2 masks. Diags_ USER1 is for general
information and Diags_USER?2 is for more detailed information.

The USBMSCHFatFs driver does not provide any information to the ROV tool.

Examples

See the TI-RTOS Getting Started Guide for your device family for a list of examples that use this driver.

88

TI-RTOS Drivers SPRUHD4I—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com USB Reference Modules

5.14 USB Reference Modules

This section provides general guidelines for integrating TI's USB Library into an RTOS environment such
as SYS/BIOS. The USB Library incorporated with TI-RTOS is a released version of TivaWare'’s,
MWare's, or MSPWare’s USB library. This document does not explain each Ware’s USB Library in detail.
Instead, it points out important design considerations to consider in application development.

The USB library is highly customizable, and it uses its associated driverlib software to access physical
registers on the device, in particular those of the USB controller. To avoid limiting its capabilities by
providing a driver that uses the library in a particular way, the TI-RTOS USB examples are structured as
reference modules with the expectation that the developer makes the necessary changes for production.

mmmmmy APls calls and callbacks
I) Configuration data structures
) | ow level hardware register calls

TI-RTOS User Application and board specifics

|
main() :
(Pre-BIOS_start()) |
|

linitUSB(} RTOS-safe APls I SYS/BIOS AF‘Isl

) USS Reference Module SIS
Board b
Inlltlallzauc:n USB Config | | USB Library APIs, [l Callbacks
“board.c | B
USB Library . SYS/BIOS
usblib / usblib430 Kernel

l Board specific init Driver Library APIsl

TivaWare / MWare /| MSP430Ware
driverlib

TI-RTOS User Application

Low Level Register I/O b ~ Timers, Boot, Jll Hwi modules

Hardware Register Level

Peripheral Specifics

Reference modules are examples that give developers full access, so they can make changes and
modifications as needed. The goal of these modules is to provide a starting point for integrating the USB
library into a SYS/BIOS application.

SPRUHD4l—March 2015 TI-RTOS Drivers 89
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

USB Reference Modules www.ti.com

5.14.1

USB Reference Modules in TI-RTOS

Each module handles the following items:

Initializes the USB library and provides the necessary memory allocation, data structures, and
callback functions.

Installs the associated USB interrupt service routine provided with the USB library as a SYS/BIOS
HWI object.

— For MSP43x devices, interrupts are installed via the configuration file (*.cfg). The interrupt
service routine was generated using the MSP43x USB Descriptor Tool.

Provides a set of thread-safe APIs that can be used by one or more SYS/BIOS Tasks.

Creates the necessary RTOS primitives to protect critical regions and allows Tasks to block when
possible.

For USB Host examples, it also creates separate Task that services the USB stack.

5.14.1.1 Reference module APIs

All of the reference modules include the following APIs. Each module also includes specific APIs unique
to that particular module.

Module init () — This function initializes the USB library, creates RTOS primitives, and installs the
proper interrupt handler. For the host examples, it also creates a Task to service the USB controller.

Module waitForConnect () — This function causes a Task to block when the USB controller is not
connected.

5.14.1.2 USB Examples

TI-RTOS has six USB reference examples and one USB FatFs (MSC host) driver. (On-the-go (OTG)
examples are not available with TI-RTOS.) The reference examples and driver are as follows:

HID Host Keyboard — Allows a USB keyboard to be connected to the target. Keys pressed on the
keyboard are registered on the target.

HID Host Mouse — Allows a USB mouse to be connected to the target. The target registers the
overall mouse movements and button presses.

HID Device Keyboard — Causes the target to emulate a USB keyboard. When connected to a
workstation, the target functions as another USB keyboard.

HID Device Mouse — Causes the target to emulate a USB mouse when connected to a workstation.

CDC Device (Serial) — The target enumerates a virtual serial COM port on a workstation. This
method of communication is commonly used to replace older RS-232 serial adapters.

HID Mouse and CDC composite device — This example enumerates two different USB devices—
a HID mouse and a CDC serial virtual COM port.

MSC Host (Mass Storage) — This example uses an actual driver instead of a USB reference module.
This driver is modeled after the FatFs driver APIs. This driver allows external mass storage devices
such a USB flash drives to be used with FatFs.

20 TI-RTOS Drivers SPRUHD4I—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com USB Reference Modules

5.14.1.3 USB Reference Modules for MSP43x

5.14.2

The USB reference modules for MSP43x devices closely follow the USB examples available in
MSPWare. Here are a few items to note:

® Since USB reference modules for MSP43x are imported via Tl Resource Explorer, a full copy of the
MSPWare's usblib430 USB stack and a set of pre-generated USB descriptor files are copied into the
CCS project.

® The generated USB descriptor files are considered user code. These descriptor files have been
tested to work with this version of TI-RTOS. Refer to the MSPWare USB documentation if you are
generating custom USB descriptors using the USB Descriptor Tool.

® The Usblsr.c file, which is generated by the USB Descriptor Tool, contains the interrupt service
routine needed by MSPWare's usblib430 library. The TI-RTOS USB reference module examples use
this interrupt service routine through configuration in the project’s *.cfg file.

USB Reference Module Design Guidelines
This section discusses the structure of the USB reference examples.

Design considerations involved in creating these examples included:

® USB Device Specifics. Each module contains memory, data structures, and a callback function
needed to function properly with the USB library. In device mode, the reference module also includes
device descriptors that need to be sent to the USB host controller upon request.

® OS Primitives. OS primitives that implement gates, mutexes, and semaphores are used to guard
data against race-conditions and reduce unwanted processing time by blocking Tasks when needed.

® Memory Allocation. The USB library is designed so that the user application performs all required
memory allocation. In a multi-tasked / preempted environment such as SYS/BIOS, it is necessary to
protect this memory from other threads. In the reference examples, this is done using the GateMutex
module.

® Callback Functions. The USB library requires user-provided callback functions to notify the
application of events. The USB reference modules provide a set of callback functions to notify the
module of status updates. The callback functions update an internal state variable and in some cases
post Semaphores to unblock pending Tasks.

® Interrupts. Some of the events that trigger callback functions are hardware notifications about the
device being connected or disconnected from a USB host controller.

5.14.2.1 Device Mode

USB Device mode examples are rather straightforward. In device mode, the job of the USB library is to
respond to the USB host controller with its current state/status. By making USB library API calls in device
mode, the example updates information stored in the USB controller’s endpoints. This information can
be queried by the USB host controller.

5.14.2.2 Host Mode

All USB Host mode examples install a high-priority Task to service the USB controller. This Task calls the
USB library's HCDMain() function, which maintains the USB library's internal state machine. This state
machine performs actions that include enumerating devices and performing callbacks as described in the
Tiva USB library documentation.

SPRUHD4l—March 2015 TI-RTOS Drivers 91
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

USB Device and Host Modules www.ti.com

To protect the USB library from race conditions between the service Task and other Tasks making calls
to the module’s APIs, a GateMutex is used.

5.14.2.3 On-The-Go Mode

OTG is not currently used by a USB reference module.

5.15 USB Device and Host Modules

See the USB examples for reference modules that provide support for the Human Interface Device (HID)
class (mouse and keyboard) and the Communications Device Class (CDC). This code is provided as part
of the examples, not as a separate driver.

The code for the HID keyboard device is in USBKBD.c in the USB Keyboard Device example. This file
provides the following functions:

® USBKBD._init()

® USBKBD_waitForConnect()
® USBKBD_getState()

® USBKBD_putChar()

® USBKBD_putString()

The code for the HID keyboard host is in USBKBH.c in the USB Keyboard Host example. This file
provides the following functions:

® USBKBH_init()

® USBKBH_waitForConnect()
® USBKBH_getState()

® USBKBH_setState()

® USBKBH_putChar()

® USBKBH_putString()

The code for the HID mouse device is in USBMD.c in the USB Mouse Device example. This file provides
the following functions:

¢ USBMD._init()
® USBMD_waitForConnect()
® USBMD_setState()

The code for the HID mouse host is in USBMH.c in the USB Mouse Host example. This file provides the
following functions:

® USBMH_init()
® USBMH_waitForConnect()
® USBMH_getState()

92 TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com USB Device and Host Modules

The code for the CDC device is in USBCDCD.c in the F28M3x Demo example, the USB Serial Device
example, and the UART Console example. This file provides the following functions:

® USBCDCD_init()

® USBCDCD_waitForConnect()
® USBCDCD_sendData()

® USBCDCD_receiveData()

The code for the CDC mouse is in USBCDCMOUSE.c in the USB CDC Mouse Device example. This file
provides the following functions:

®* USBCDCMOUSE._init()

® USBCDCMOUSE_receiveData()

® USBCDCMOUSE_sendData()

® USBCDCMOUSE_waitForConnect()

SPRUHD4l—March 2015 TI-RTOS Drivers 93
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS

INSTRUMENTS
Watchdog Driver www.ti.com
5.16 Watchdog Driver
A watchdog timer can be used to generate a reset signal if a system has become unresponsive. The
Watchdog driver simplifies configuring and starting the watchdog peripherals. The watchdog peripheral
can be configured with resets either on or off and a user-specified timeout period.
When the watchdog peripheral is configured not to generate a reset, it can be used to cause a hardware
interrupt at a programmable interval. The driver provides the ability to specify a user-provided callback
function that is called when the watchdog causes an interrupt.
5.16.1 Static Configuration
See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the
instrumented driver libraries, which are helpful in debugging.
To enable this driver, add the following statement to your application’s *.cfg file.
TIRTOS.useWatchdog = true;
5.16.2 Runtime Configuration

As the overview in Section 5.2.2 indicates, the Watchdog driver requires the application to initialize
board-specific portions of the watchdog and to provide the Watchdog driver with the Watchdog_ config
structure.

5.16.2.1 Board-Specific Configuration

The <board>.c files contain a <board>_initWatchdog() function that must be called to initialize the board-
specific watchdog peripheral settings. This function also calls the Watchdog_init() to initialize the
Watchdog driver.

5.16.2.2 Watchdog_config Structure

5.16.3

The <board>.c file also declares the Watchdog_config structure. This structure must be provided to the
Watchdog driver. It must be initialized before the Watchdog_init() function is called and cannot be
changed afterwards.

For details about the individual fields of this structure, see the Doxygen help by opening
<tirtos_installs\docs\doxygen\html\index.html. (The CDOC help provides information about
configuring the driver, but no information about the APIs.)

APIs

In order to use the Watchdog module APls, the Watchdog header file should be included in an application
as follows:

#include <ti/drivers/Watchdog.h>
The following are the Watchdog APIs:
® Watchdog_init() initializes the Watchdog module.

® Watchdog Params_init() initializes the Watchdog_Params struct to its defaults for use in calls to
Watchdog_open().

® Watchdog_open() opens a Watchdog instance.

94

TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com Watchdog Driver

5.16.4

5.16.5

® Watchdog_clear() clears the Watchdog interrupt flag.
® Watchdog_setReload() sets the Watchdog reload value.

For details, see the Doxygen help by opening <tirtos installs\docs\doxygen\html\index.html.
(The CDOC help provides information about configuring the driver, but no information about the APIs.)

Usage

The Watchdog driver does not configure board peripherals. This must be done before any calls to the
Watchdog driver. The examples include board-specific initWatchdog() functions in the board .c and .h
files. Once the watchdog is initialized, a Watchdog object can be created through the following steps:

1. Create and initialize the Watchdog_Params structure.
2. Assign desired values to parameters.

3. Call Watchdog_open().
4

Save the Watchdog_Handle returned by Watchdog_open(). This will be used to interact with the
Watchdog object just created.

To have a user-defined function run at the hardware interrupt caused by a watchdog timer timeout, define
a Void-type function that takes an argument of type Watchdog_Handle cast as a UArg as follows:

typedef Void (*Watchdog Callback) (UArg) ;
An example of the Watchdog creation process that uses a callback function:

Watchdog Params params;
Watchdog Handle watchdog;

Board initWatchdog() ;

/* Create and enable a Watchdog with resets enabled */
Watchdog Params init (¶ms) ;

params.resetMode = Watchdog RESET ON;
params.callbackFxn = UserCallbackFxn;

watchdog = Watchdog open(Board WATCHDOG, ¶ms) ;
if (watchdog == NULL) {

/* Error opening watchdog */
}

If no Watchdog_Params structure is passed to Watchdog_open(), the default values are used. By default,
the Watchdog driver has resets turned on, no callback function specified, and stalls the timer at
breakpoints during debugging.

Options for the resetMode parameter are Watchdog_ RESET_ON and Watchdog RESET_OFF. The
latter allows the watchdog to be used like another timer interrupt. When resetMode is

Watchdog RESET_ON, it is up to the application to call Watchdog_clear() to clear the Watchdog
interrupt flag to prevent a reset. Watchdog_clear() can be called at any time.

Instrumentation

The Watchdog module provides instrumentation data by both making log calls and by sending data to
the ROV tool in CCS.

The Watchdog driver logs the following actions using the Log_print() APIs provided by SYS/BIOS.

SPRUHD4l—March 2015 TI-RTOS Drivers 95
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

WiFi Driver www.ti.com

5.16.6

5.17

® Watchdog_open() success or failure

® Reload value changed

In the ROV tool, all Watchdogs that have been created are displayed and show the following information.
® Basic parameters:

— Watchdog handle

— base address

— Watchdog function table

Examples

See the TI-RTOS Getting Started Guide for your device family for a list of examples that use this driver.

WiFi Driver

The TI-RTOS WiFi driver implements many elements needed to communicate with a TI Wi-Fi device such
as the SimpleLink Wi-Fi CC3100. The WiFi driver uses the TI-RTOS SPI module and implements a state
machine to send and receive commands, data, and events to and from a Wi-Fi device.

This driver’'s APIs let you open a WiFi driver instance to communicate with the Wi-Fi device's host driver
without further direct calls to the WiFi driver from the application. TI-RTOS provides host drivers for its
supported Wi-Fi devices in <tirtos_installs\packages\ti\drivers\wifi\<wi-fi device names.

You can configure the driver to allow calling the WiFi driver from a single thread or to be safe to call from
multiple threads. The multi-threaded version of host driver consumes more resources than the single-
thread version. The WiFi driver supports only one instance of the driver.

For details on which resources each implementation of the WiFi driver uses (such as DMA channels and
interrupts), see the Doxygen help by opening <tirtos install>\docs\doxygen\html\index.html.

96

TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS
www.ti.com WiFi Driver

5.17.1 Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the
instrumented driver libraries, which are helpful in debugging.

To enable this driver, add the following statement to your application’s *.cfg file.
var WiFi = xdc.useModule('ti.drivers.WiFi') ;

or configure this driver graphically:

* | TI-RTOS * Drivers * WiFi Driver - Basic e)
Advanced
The WiFi module allows an application to automatically bring in the WiFi Driver,
[V] Add WiFi to my configuration
= Library Selection Options = SelectThread Priority
WiFi Driver Library Type WiFi Host Driver Type The SelectThread is a task created by the
) instrumented @ single-thread multi-thread version of the host driver to

prevent long host driver calls such as
recv(] and accept() from preventing other
tasks from making host driver API calls
while they wait for a response,

@ non-instrurmented 71 multi-thread

The library options above allow you to select either
instrumented or non-instrurmented WiFi runtime
;uppu:urt. I’.c alsp allnuf.fs you to chu:n:me.l::letween B You may select the Task priority as you
library built with a single-thread version of the WiFi would for any other Task instance.

device's host driver or a multi-thread version,
SelectThread priority | 1

w WiFi Transfer and Receive Payload 5izes

The TX and RX buffers are used for sending commands and data to the Wi-Fi device, In order to
determine how large to make these buffers, the maximum payload data amount must be specified.

Meither payload may be any larger than 1460 bytes,
Maximurmn TX payload size (bytes) 256

Maximurn RX payload size (bytes) 256
TI-RTOS | WiFi &% | cfg Script

By default, the WiFi library linked into the project is prebuilt with a version of the WiFi device's host driver
that is only safe to call from a single task. You can choose to allow calling the WiFi driver from multiple
threads. The multi-threaded version of host driver consumes more resources than the single-thread

version.

If you choose the multi-threaded version, internal calls by the WiFi host driver are run from within a Task
thread called SelectThread in order to allow other host driver API calls to run while the WiFi driver is
waiting for a response. You can configure the priority of the SelectThread task; the default priority is 1,

which is just above the priority of the Idle thread.

SPRUHD4l—March 2015 TI-RTOS Drivers 97

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

WiFi Driver www.ti.com

5.17.2

In addition to library type, the WiFi driver requires the maximum TX and RX data payload sizes to be
configured statically. These payload sizes are used by the WiFi module to create appropriately-sized
buffers for use by the WiFi driver and Wi-Fi device's host driver. They can be specified graphically as
shown in the previous image or textually as follows:

WiFi.txPayloadSize
WiFi.rxPayloadSize

1468;
1468;

In order to use the WiFi driver, your configuration must also include the SPI module. See Section 5.10,
SPI Driver for details.

Runtime Configuration

As the overview in Section 5.2.2 indicates, the WiFi driver requires the application to initialize board-
specific portions of the WiFi driver and provide the WiFi driver with the WiFi _config structure. A
SPI_config structure is also required by the WiFi driver.

5.17.2.1 Board-Specific Configuration

The <board>.c files contain a <board>_initWiFi() function that must be called to initialize the board-
specific WiFi peripheral settings. This function also calls WiFi_init() and SPI_init() to initialize the WiFi
driver and its resources.

5.17.2.2 WiFi_config Structure

5.17.3

The <board>.c file also declares the WiFi_config structure. This structure must be provided to the WiFi
driver. It must be initialized before the WiFi_init() function is called and cannot be changed afterwards.

For details about the individual fields of this structure, see the Doxygen help by opening
<tirtos_install>\docs\doxygen\html\index.html. (The CDOC help provides information about
configuring the driver, but no information about the APIs.)

Note that the SPI_config structure must also be present and initialized before the WiFi driver may be
used. See Section 5.10, SPI Driver for details.

APIs
In order to use the WiFi module APIs, the WiFi header file should be included in an application as follows:

#include <ti/drivers/WiFi.h>

The following are the WiFi APIs:

® WiFi_init() initializes the WiFi module.

® WiFi_Params_init() initializes the WiFi_Params struct to its defaults for use in calls to WiFi_open().
® WiFi_open() opens a WiFi instance.

® WiFi_close() closes a WiFi instance.

For detalls, see the Doxygen help by opening <tirtos installs\docs\doxygen\html\index.html.
(The CDOC help provides information about configuring the driver, but no information about the APIs.)

98

TI-RTOS Drivers SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com WiFi Driver

5.17.4

5175

Usage

Before any APIs from the Wi-Fi device's host driver can be used, the application must open the WiFi
driver. The WiFi_open() function configures the SPI driver, creates necessary interrupts, and registers a
callback to inform the application of events that may occur on the Wi-Fi device. Once WiFi_open() has
returned, host driver APIs may be used to start sending commands and data to the Wi-Fi device.

WiFi Params params;
WiFi Handle handle;

/* Open WiFi */
WiFi Params_init (¶ms) ;

params.bitRate = 5000000; /* Set bit rate to 5 MHz */
handle = WiFi open (Board wifiIndex, Board spiIndex, userCallback, ¶ms) ;
if (handle == NULL) {

System_abort ("Error opening WiFi\n") ;

}

/* Host driver APIs such as socket () may now be called. */

The WiFi_close() function should be called when use of the host driver APIs is complete.

Instrumentation

The WiFi driver provides instrumentation data by both making Log calls and by sending data to the ROV
tool in CCS.

5.17.5.1 Logging

The WiFi driver is instrumented with Log events that can be viewed with UIA and RTOS Analyzer. Diags
masks can be turned on and off to provide granularity to the information that is logged. Use
Diags_USER1 to see general Log events. The WiFi driver logs the following actions using the Log_print()
APIs provided by SYS/BIOS.

® WiFi device enabled or disabled

® Interrupts enabled or disabled

® WiFi_open() success or failure

® WiFi_close() success

® Send or receive buffer overrun

® Reads and writes to WiFi device completed
® SPI_transfer() failure

5.17.5.2 ROV

5.17.6

In the ROV tool, the following information about the WiFi driver is shown:

® Function table

® WiFi handle
® |IRQ interrupt vector ID number
® SPlhandle

® SPJ state machine state

Examples

See the TI-RTOS Getting Started Guide for your device family for a list of examples that use this driver.

SPRUHD4l—March 2015 TI-RTOS Drivers 929
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

TEXAS
INSTRUMENTS Chapter 6

SPRUHD4l—March 2015

TI-RTOS Network Services

This chapter provides information about utilities provided by TI-RTOS.

Topic Page
6.1 OVEIVIBW . ottt ittt e e e 100
6.2 HTTP Client e e e 100
6.3 Static Configuration 101
6.4 APIS . 101
6.5 EXamples 101
6.1 Overview
The TI-RTOS Network Services provides high-level networking communication protocols, such as the
HTTP Client.
6.2 HTTP Client
The HyperText Transfer Protocol (HTTP), an ubiquitous application protocol that powers the web, has
become the preferred communication protocol for device-to-device communication as well. To jumpstart
the development of such connected embedded devices, TI-RTOS provides a lightweight client-side
implementation of the IETF standard for HTTP/1.1 (RFC2616). This implementation includes support for
the GET, POST, PUT, HEAD, OPTIONS, and DELETE methods, response codes, request and response
bodies, and redirections (via 3xx response codes). At the IP level, both IPv4 and IPv6 transports are
supported.
With security increasingly being a key concern, the standard security via SSL/TLS to make the session
secure (HTTPS) and communication through proxies are included.
The SSL/TLS version of the HTTP Client is not provided by default; it requires building CyaSSL. The
HTTP Client SSL/TLS is rebuilt along with the CyaSSL libraries. For more information about CyaSSL,
read the Using CyaSSL with TI-RTOS topic on the TI wiki.
SPRUHD4l—March 2015 TI-RTOS Network Services 100

Submit Documentation Feedback

http://processors.wiki.ti.com/index.php?title=Using_CyaSSL_with_TI-RTOS
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I

13 TEXAS
INSTRUMENTS

www.ti.com Static Configuration

6.3 Static Configuration

To enable the HTTP Client, add the following statements to your application's *.cfg file.

var HttpCli = xdc.useModule ('ti.net.http.HttpCli');
HttpCli.networkStack = HttpCli.NDK;

To enable the SSL/TLS layer, add the following statement after the above statements.

HttpCli.enableTLS = true;

6.4 APIs

In order to use the HTTP Client module APIs, the HTTP Client file should be included in an application
as follows:

#include <ti/net/http/httpcli.h>

The following are the HTTP Client APlIs:

® HTTPCIi_initSockAddr() initializes the socket address structure for the given URI.

® HTTPCIi_construct() creates a new instance object in the provided structure.

® HTTPCIi_create() allocates and initializes a new instance object and returns its handle.

® HTTPCIli_connect() opens a connection to a HTTP server.

® HTTPCIi_delete() destroys a HTTP client instance and frees a previously allocated instance object.
® HTTPCIi_destruct() destroys the HTTP client instance.

® HTTPCIi_setRequestFields() sets an array of header fields to be sent for every HTTP request.
® HTTPCIi_setResponseFields() sets the header fields to filter the response headers.

® HTTPCIli_sendRequest() makes an HTTP request to the HTTP server.

® HTTPCIi_sendField() sends a header field to the HTTP server.

® HTTPCIli_sendRequestBody() sends the request message body to the HTTP server.

® HTTPCIli_getResponseStatus() processes a response header from the HTTP server and returns
status.

® HTTPCIli_getResponseField() processes a response header from the HTTP server and returns
field.

® HTTPCIli_readResponseBody() reads the parsed response body data from the HTTP server.
® HTTPCIli_readRawResponseBody() reads the raw response message body from the HTTP server.
® HTTPCIi_setSecureParams() sets the secure communication parameters.

® HTTPCIi_setProxy() sets the proxy address.

For details, see the Doxygen help by opening
<tirtos install>\docs\networkservices\doxygen\html\index.html.

6.5 Examples

See the TI-RTOS Getting Started Guide for your device family for a list of examples that use this service.

SPRUHD4l—March 2015 TI-RTOS Network Services 101
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

I3 TEXAS
Chapter 7
INSTRUMENTS SPRUHD4I—March 2015

TI-RTOS Utilities

This chapter provides information about utilities provided by TI-RTOS.

Topic Page
7.1 OVEIVIEW .ottt et e e e e e e 102
7.2 UARTMon Module e 102
7.3 UART Example Implementation. 108

7.1 Overview

Utilities for use with TI-RTOS are provided in the <tirtos installs\packages\ti\tirtos\utils
directory. This chapter describes such modules.

7.2 UARTMon Module

The UARTMon module (ti.tirtos.utils. UARTMon) enables host communication with a target device using
the target’s UART. The target device can respond to requests to read and write memory at specified
addresses. CCS includes features that allow you to leverage this utility to monitor the target device with
the Debug view or with GUI Composer.

The GPIO example enables the UARTMon module. See the readme file in the example project for
information about the example.

SPRUHD4l—March 2015 TI-RTOS Utilities 102
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I

i3 TEXAS
INSTRUMENTS

www.ti.com UARTMon Module

To use UARTMon in your application, open the project’s *.cfg file with the XGCONF Configuration Editor.
Select the TIRTOS module, and choose the System Overview to see the diagram below. Right-click on
the UART Monitor module and select Use UARTMon from the drop-down to add it to your application.
No extra user code is needed on the target to use this utility.

i:T,J'I'IF{escuurce Explorer & uartconsole_mspd30.cfg &3

» TI-RTOS - System Overview " =
Instrumentation .. Communication
i _ i ‘ - :
i 4 i i i
i Logging UART Monitor | ; TqPIP !
i | ’ - !
Use UARTMen
\ Help
Kernel File System
2 O A
: TI-RTOS Kernel P
: P FatFs
: ~ (SYSBIOS) P
: ¥ I

To configure this module, select UARTMon in the Outline pane to view its configuration page.

2 *uartconsole_mspd30.cfg &2 =8
» | » Monitors * UART Monitor - Basic F o @
Advanced

The UART monitor module enables target communication with a client GUI
Composer application.

| Add UARTMon to my configuration
+ UART Monitor Options

UART Index 0
UART baudrate 9600
Monitor task pricrity 1

Manitor task stack size (set to 0 to use device default) 0

TI-RTOS |UARTMon &2 | cfg Script

The UART Index property is the board index of the UART peripheral to be used as a monitor. In the
Board.h file, Board_UARTO has an index of 0 and Board_UARTL1 has an index of 1. Other options that
can be adjusted are the baud rate for the UART and the priority and stack size for the Task that performs
the monitoring.

SPRUHD4l—March 2015 TI-RTOS Utilities 103
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

UARTMon Module www.ti.com

Once UARTMon is enabled in your configuration, a task called UARTMonTask is automatically created
and can be seen among your task instances in XGCONF Configuration Editor as shown below. This task
will also show up in ROV when you are debugging.

2 *uartconsole_mspd30.cfg =2 = 0O

P » » SYSBIOS * Scheduling * Task - Instance Settings = & @

Module Advanced
* Tasks * Required Settings
console Add .. Handle UARTMeonTask
UARTMon_taskHandl
Function UARTMen_taskFxn

Pricrity 1

Use the vital flag to prevent systemn exit until this thread exits
Tack ic vital

The UARTMon module has no C APls.

The GPIO Interrupt examples for the MSP-EXP430F5529LP, Tiva EK-TM4C123GXL LaunchPad and
Tiva DK-TM4C123G Evaluation Kit boards have UARTMon enabled.

7.2.1 UARTMon with CCS Tools
CCS supports UART communication alongside a JTAG connection. This section explains how to create
the necessary target configuration and run the debug session.
Follow these steps to create a target configuration file that allows you to use a UART Monitor connection
in addition to your existing JTAG connection:
1. Choose File > New > Target Configuration File from the CCS menus.
2. Type a filename for this configuration, and click Finish. The target configuration will be stored in a
*.cexml file.
3. Inthe Target Configuration window, select the
main connection used to communicate with General Setup
the device. For example, for Stellaris and Tiva This section describes the general target configuration.
boards, you might use the Stellaris In-Circuit -
Debug I)llflterfa?:e Cennection ’S.tellarisIn-Circuit Debug Interface -
4. To specify the device, begin typing the name Board or Device TM4C123G &7
of your device. The filter field shows only :
those devices that match what you type. [Tiva TMACL3GEGPM
5 Wh devi heck the b [] Tiva TM4C123GEGPZ
. en you see your device, check the bo _
you see your devi X] Tiva TM4C123GHEPGE
next to It.
6. Ifthe devi ect h UART on it Tiva TM4C123GHEP M
. e device you select has a on its :
board, you see the Alternate Communication O T!VE TMAC123GHEPZ
area to the right of the device selection. [C] Tiva TM4C123GHBZRE
104 TI-RTOS Utilities SPRUHD4I—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

www.ti.com UARTMon Module

7. Make sure UART Communication is selected in the drop-down list. It is typically the only option.

Alternate Communication

Uart Communication =

To enable host side (i.e. PC) configuration necessary to facilitate data
communication over UART, target application needs to include a monitor
implementation. Please check example project in TI Resource Explorer. If your
target application leverages TI-RTOS, then please check docurnentation on how to
enable Uart Monitor module,

To add a port in the target application for Uart Moenitor, click the Add button,

To remove a port in the target application for Uart Moenitor, select the port to be
removed and click the Rermove button.

G ComPort Add Cortex_M4 CPU

Delete | COMPort Com28

Baud Rate ggop

Note: When using a driver based on the Tiva In-Circuit Debug Interface (ICDI) or an MSP430
driver, the COM Port must have the same number as one identified in the Windows
Device manager. When using a XDSv2 USB Emulator, there is no such limitation; the
emulator can create a new COM port.

8. Click the Add button and select the ComPort that is created.
Modify the COM Port and Baud Rate as needed.

10. Click Save to save your target configuration file.

SPRUHD4l—March 2015 TI-RTOS Utilities 105
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS

INSTRUMENTS
UARTMon Module www.ti.com
To run and debug a program that has the UARTMon module enabled, follow these steps:
1. Build your application if you have not already done so.
2. Choose Run > Debug Configurations from the CCS menus.
s+ Debug Configurations]
: =
Create, manage, and run configurations @
X8~ Mame: UARTMon
type fitber tet %% Main | " Program == Target % Source [Commeon
[E] C/C++ Remote Application o - -
4 §% Code Composer Studio - Device Debugging || | |D€¥ice |UARTConnection_0/ComPort i
*# UARTMon.ccxml Project UARTMon Clear : Workspace..
[£] GDB Hardware Debugging ' ' = :
Java Applet Program ${build_artifact:U# | File System.. || Workspace..
lava Application Loading options
Launch Group Load program
Remote Java Application | @ Load symbols only |
» Remote JavaScript
X# Rhino JavaScript
52 p | Apply | | Revert
@ | Debug | | Close
3. Expand the Code Composer Studio - Device Debugging category and select the target
configuration you just created. (If your target configuration file is not listed under the Device
Debugging category, close this dialog, launch the target configuration, and then re-open the Debug
Configuration dialog to cause the new target configuration to be listed.)
4. In the right page of the dialog, choose the Program tab.
Make sure the interface or emulator used for non-UART communication is selected in the Device
drop-down list. For example, for Tiva and Stellaris boards, you might be using the Stellaris In-Circuit
Debug Interface.
6. If your projectis not already selected for the non-UART interface or emulator, click Workspace in the
Project row and select the project you want to debug. Click OK.
7. Selectthe Load program loading option for this device.
8. Move back up to the Device drop-down list. This time, select the UARTConnection_0/ComPort
option in the Device drop-down list.
9. If your project is not already selected for the UART connection, click Workspace in the Project row
and select the project you want to debug. Click OK.
10. Select the Load symbols only loading option for this device. If you skip this step, the debugger will
attempt to program the device using the UART connection.
11. Click Debug.
106 TI-RTOS Utilities SPRUHD4I—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

www.ti.com UARTMon Module

12. In the Debug view, the UARTConnection is listed among the available connections and is marked as
Running, meaning that the COM Port specified is now being listened to.

% Debug 2 e 0] @223 @S|~ 0
4 k¢ gpiointerrupt_TivaTM4C123GHEPGE [Code Composer Studio - Device Debugging]
4 4 Stellaris In-Circuit Debug Interface/CORTEX_M4_0 (Suspended - HW Breakpoint)
= main() at gpiointerrupt.c:91 0x00002718
= ¢ intD0() at boot.asm:254 0x000037A4 (c_intD0 does not contain frame information)
(bﬁ‘ UARTConnection_0/ComPort (Running))

13. If you configured the project to enable UARTMon as described in the previous section, you can select
the UART connection to watch variables and expressions the same way you would with an emulator.

%5 Debug 22 % | b k| hv&|@Y "0
4 ¢ gpiointerrupt_TivaTM4C123GH6PGE [Code Compaoser Studio - Device Debugging]
@ Stellaris In-Circuit Debug Interface/CORTEX_M4_0 (Running)
UARTConnection_0/ComPort (Running)

)= Variables | £ Expressions 52 | 14 Registers % 3 | G | i | =

Expression Type Value

({xl= count int 10)

=r Add new expression

In this example, the count variable in the Expressions window is being watched using the UART
Connection when that item is selected. If the Stellaris In-Circuit Debug Interface is selected, that
connection is used to watch the same variable.

SPRUHD4l—March 2015 TI-RTOS Utilities 107
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS

INSTRUMENTS
UART Example Implementation www.ti.com
7.2.2 GUI Composer
GUI Composer is a tool in CCS for creating custom graphical user interfaces that interact with your target
application. You can use it to create interface widgets that are bound to variables in the running target
and update themselves accordingly. With UARTMon included in your application, GUI Composer can
use the UART connection to interact with the running target.
For example, the count variable shown in the previous section can be bound to a dial widget in GUI
Composer. When the value of the count variable changes on the target, the UART connection is used to
change the reading on the dial. In addition, you can use the dial to set the value of the count variable on
the target. To learn more about GUI Composer, see the Texas Instruments Wiki.
¢ GUI Composer™
7.3 UART Example Implementation
The uarRTUti1s. c file provides an example implementation using a UART. Three of the System functions
are initialized (the others default to NULL) in the uartconsole.cfg file. The example uses the
SysCallback module provided by XDCtools.
The configuration source is as follows. These statements create the same configuration as the graphical
settings shown in Section 7.2:
var SysCallback = xdc.useModule ('xdc.runtime.SysCallback') ;
SysCallback.abortFxn = "&UARTUtils systemAbort";
SysCallback.putchFxn = "&UARTUtils systemPutch";
SysCallback.readyFxn = "&UARTUtils systemReady";
System. SupportProxy = SysCallback;
In uartconsole.c, main() does the following
1. Calls the board-specific setupUART() function to initialize the UART peripheral.
2. Calls UARTUtils_systeminit() as follows to initialize the UART 0 software. After the
UARTULtils_systeminit function is called, any System_printf output will be directed to UART 0.
/* Send System printf to the UART 0 also */
UARTUtils systemInit (0);
108 TI-RTOS Utilities SPRUHD4I—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://processors.wiki.ti.com/index.php/Category:GUI_Composer
http://www.ti.com

I3 TEXAS
INSTRUMENTS Chapter 8

SPRUHD4l—March 2015

Using the FatFs File System Drivers

This chapter provides an overview of FatFs and discusses how FatFs is interconnected and used with
TI-RTOS and SYS/BIOS.

Topic Page
8.1 OVEIVIEW .ottt 109
8.2 FatFs,SYS/BIOS,and TI-RTOS, 110
8.3 Using FatFso 111
8.4 Cautionary NOteS. 113

8.1 Overview

FatFs is a free, 3rd party, generic File Allocation Table (FAT) file system module designed for embedded
systems. The module is available for download at http://elm-chan.org/fsw/ff/00index_e.html along with
API documentation explaining how to use the module. Details about the FatFs API are not discussed
here. Instead, this section gives a high-level explanation about how it is integrated with TI-RTOS and
SYS/BIOS.

The FatFs drivers provided by TI-RTOS enable you to store data on removable storage media such as
Secure Digital (SD) cards and USB flash drives (Mass Storage Class). Such storage may be a
convenient way to transfer data between embedded devices and conventional PC workstations.

SPRUHD4|—March 2015 Using the FatFs File System Drivers 109
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://elm-chan.org/fsw/ff/00index_e.html

i3 TEXAS
INSTRUMENTS

FatFs, SYS/BIOS, and TI-RTOS www.ti.com

8.2 FatFs, SYS/BIOS, and TI-RTOS

SYS/BIOS provides a FatFS module. TI-RTOS extends this feature by supplying "FatFs" drivers that link
into the SYS/BIOS FatFs implementation. The FatFS module in SYS/BIOS is aware of the multi-threaded
environment and protects itself with OS primitives supplied by SYS/BIOS.

SYS/BIOS Application

o T T e T -~ S - --="-=-=
| | !)
l C /O runtime library (optional) - { l Application calls C I/O or FatFs APls :

——— |
| C I/O library function calls I . J
| |
| |
I FatFs Module

MCU SDK
| FalF's disk function calls sk SR S P PR P —
| 1
: I —:b SDSPI driver |-— |
| disk_functionSet[0] l | s;g;]s;t; |
; ;) USBMSCHFatFs registers,
| dhk_functionSet[1]] - driver P interupt service |
roqtine_s. or other

I disk_functionS l | Fullins wica e l

- etin] | | - driver - |
I diskio Function Table J \ J

Figure 8-1 FatFs data flow

From the start of this data flow to the end, the components involved behave as follows:

® Application. The top application layer calls the basic open, close, read, and write functions. Users
who are familiar with FatFs can easily use the FatFs API, which is documented at the module’s
download site. Alternatively, SYS/BIOS also connects the C input/output (C I/O) runtime support
library in TI's Code Generation Tools to FatFs. You can call familiar functions such as fopen(),
fclose(), fread(), and fwrite(). Functionally, the C I/O interface and the FatFs APIs perform the same
operations (with a few exceptions described in Section 8.3).

® FatFS module. The next layer, the ti.sysbhios.fatfs.FatFS module, is provided as part of SYS/BIOS.
This module handles the details needed to manage and use the FAT file system, including the
media’s boot sector, FAT tables, root directories, and data regions. It also protects its functions in a
multi-threaded environment. Internally, the FatFS module makes low-level data transfer requests to
the Disk 10 functions described on the FatFs product web page. Implementations of this set of
functions are called "FatFs drivers" in this document.

® disklO Function table. To allow products to provide multiple FatFs drivers, the SYS/BIOS FatFS
module contains a simple driver table. You can use this to register multiple FatFs drivers at runtime.
Based on the drive number passed through FatFs, the driver table routes FatFs calls to a particular
FatFs driver.

110 Using the FatFs File System Drivers SPRUHD4l—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com
http://elm-chan.org/fsw/ff/00index_e.html

1,

TeEXAs
INSTRUMENTS

www.ti.com Using FatFs

8.3

8.3.1

® FatFs drivers. The last layer in Figure 8-1 is the FatFs drivers. TI-RTOS comes with pre-built FatFs
drivers that plug into the FatFS module provided by SYS/BIOS. A FatFs driver has no knowledge of
the internal workings of FatFs. Its only task is to perform disk-specific operations such as
initialization, reading, and writing. The FatFs driver performs read and write operations in data block
units called sectors (commonly 512 bytes). Details about writing data to the device are left to the
particular FatFs driver, which typically accesses a peripheral’s hardware registers or uses a driver
library.

Using FatFs

The subsections that follow show how to configure FatFs statically, how to prepare the FatFs drivers for
use in your application, and how to open files. For details about performing other file-based actions once
you have opened a file, see the FatFs APIs described on http://elm-chan.org/fsw/ff/00index_e.html in the
"Application Interface" section or the standard C I/O functions.

The TI-RTOS F28M3x Demo example and all 3 FatFs File Copy examples use FatFs with the SDSPI
driver. The FatSD USB Copy example uses the USBMSCHFatFs driver.

Static FatFS Module Configuration

To incorporate the SYS/BIOS FatFS module into an application, simply "use" this module in a
configuration (.cfg) file. You can do this by searching the Available Products list in the XGCONF
Configuration Editor for FatFS, selecting the SYS/BIOS FatFS module, and checking the Enable FAT
File System in My Application box. Or, you can add the following statement to the .cfg file.

var FatFS = xdc.useModule('ti.sysbios.fatfs.FatFS');

Note: The name of the product and the drivers is "FatFs" with a lowercase "s". The name of
the SYS/BIOS module is "FatFS" with an uppercase "S". If you are using a text editor
to write configuration statements, be sure to use the uppercase "S". If you are using the
XGCONF Configuration Editor to edit your configuration graphically, the correct
capitalization is used automatically.

By default, the prefix string used in C 1/O fopen() calls that uses this module is "fat" and no RAM disk is
created. You can these defaults by modifying the FatFS module properties.

For example, you can change the C I/O prefix string used in fopen() calls by adding this line to the .cfg file:
FatFS.fatfsPrefix = “newPrefix”;

The application would then need to use the prefix in C /O fopen() calls as follows:

src = fopen(“newPrefix:0:signal.dat”, "w");

See the online help for the module for more details about FatFS configuration.

You will also need to configure the FatFs driver or drivers you want to use. See Section 5.9, SDSPI Driver
and Section 5.13, USBMSCHFatFs Driver for details.

SPRUHD4l—March 2015 Using the FatFs File System Drivers 111
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com
http://elm-chan.org/fsw/ff/00index_e.html

13 TEXAS

INSTRUMENTS
Using FatFs www.ti.com
8.3.2 Defining Drive Numbers
Calls to the open() functions of individual FatFs drivers—for example, SDSPI_open()—require a drive
number argument. Calls to the C I/O fopen() function and the FatFs APIs also use the drive number in
the string that specifies the file path. The following C code defines driver numbers to be used in such
functions:
/* Drive number used for FatFs */
#define SD DRIVE NUM 0
#define USB_DRIVE NUM 1
Here are some statements from the FatSD USB Copy example that use these drive number definitions.
Note that STR(SD_DRIVE_NUM) uses a MACRO that expands SD_DRIVE_NUM to 0.
SDSPI Handle sdspiHandle;
SDSPI_Params sdspiParams;
FILE *src;
const Char inputfilesd[] = "fat:"STR(SD DRIVE NUM)'":input.txt";
/* Mount and register the SD Card */
SDSPI_Params_init (&sdspiParams) ;
sdspiHandle = SDSPI open (Board SDSPIO, SD DRIVE NUM, &sdspiParams) ;
/* Open the source file */
src = fopen(inputfilesd, "r");
8.3.3 Preparing FatFs Drivers
In order to use a FatFs driver in an application, you must do the following:
® Include the header file for the driver. For example:
#include <ti/drivers/SDSPI.h>
® Run the initialization function for the driver. All drivers have init() functions—for example,
SDSPI_init()—that need to be run in order to set up the hardware used by the driver. Typically, these
functions are run from main(). In the TI-RTOS examples, a board-specific initialization function for
the driver is run instead of running the driver’s initialization function directly. For example:
Board initSDSPI();
® Openthedriver. The application must open the driver before the FatFs can access the drive and its
FAT file system. Similarly, once the drive has been closed, no other FatFs calls shall be made. All
drivers have open() functions—for example, SDSPI_open()—that require a drive number to be
passed in as an argument. For example:
sdspiHandle = SDSPI_open (Board SDSPIO, SD DRIVE NUM, NULL) ;
See Section 5.9, SDSPI Driver and Section 5.13, USBMSCHFatFs Driver for details about the FatFs
driver APlIs.
112 Using the FatFs File System Drivers SPRUHD4I—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

1,

TeEXAs
INSTRUMENTS

www.ti.com Cautionary Notes

8.34

Opening Files Using FatFs APIs

Details on the FatFs APIs can be found at http://elm-chan.org/fsw/ff/00index_e.html in the "Application
Interface" section.

The drive number needs to be included as a prefix in the filename string when you call f_open() to open
a file. The drive number used in this string needs to match the drive number used to open the FatFs
driver. For example:

res = f open(&fsrc, “SD DRIVE NUM:source.dat”, FA OPEN EXISTING | FA READ) ;
res = £ open(&fdst, “USB DRIVE NUM:destination.dat”, FA CREATE ALWAYS | FA WRITE);

A number of other FatFs APIs require a path string that should include the drive number. For example,
f_opendir(), f_mkdir(), f_unlink(), and f_chmod().

Although FatFs supports up to 10 (0-9) drive numbers, the SYS/BIOS disklO function table supports only
up to 4 (0-3) drives. You can modify this default by changing the definition of VOLUMES in the ffconf.h
file in the SYS/BIOS FatFS module. You will then need to rebuild SYS/BIOS as described in the
SYS/BIOS User’s Guide (SPRUEX3).

It is important to use either the FatFs APIs or the C I/0O APIs for file operations. Mixing the APIs in the
same application can have unforeseen consequences.

8.3.5 Opening Files Using C I/0 APIs
The C input/output runtime implementation for FatFs works similarly to the FatFs APIl. However, you must
add the file name prefix configured for the FatFS module (“fat" by default) and the logical drive number
as prefixes to the filename. The file name prefix is extracted from the filename before it gets passed to
the FatFs API.
In this example, the default file name prefix is used and the drive number is O:
fopen(“fat:0:input.txt”, "r");
It is important to use either the FatFs APIs or the C I/O APIs for file operations. Mixing the APIs in the
same application can have unforeseen consequences.

8.4 Cautionary Notes
FatFs drivers perform data block transfers to and from physical media. Depending on the FatFs driver,
writing to and reading from the disk could prevent lower-priority tasks from running during that time. If the
FatFs driver blocks for the entire transfer time, only higher-priority SYS/BIOS Tasks, Swis or Hwis can
interrupt the Task making FatFs calls. In such cases, the application developer should consider how often
and how much data needs to be read from or written to the media.
By default the SYS/BIOS FatFS module keeps a complete sector buffered for each opened file. While
this requires additional RAM, it helps mitigate frequent disk operations when operating on more than one
file simultaneously.
The SYS/BIOS FatFS implementation allows up to four unique volumes (or drives) to be registered and
mounted.

SPRUHD4l—March 2015 Using the FatFs File System Drivers 113

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com
http://elm-chan.org/fsw/ff/00index_e.html

I3 TEXAS
INSTRUMENTS Chapter 9

SPRUHD4l—March 2015

Rebuilding TI-RTOS

This chapter describes how and when to rebuild TI-RTOS and components of TI-RTOS.

Topic Page
9.1 Rebuilding TI-RTOS e 115
9.2 Rebuilding MSPWare's driverlib for TI-RTOS and Its Drivers. 117
9.3 Rebuilding Individual Components. 118
SPRUHD4I—March 2015 Rebuilding TI-RTOS 114

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I

13 TEXAS
INSTRUMENTS

www.ti.com Rebuilding TI-RTOS

9.1 Rebuilding TI-RTOS

In most cases, you will not need to rebuild the TI-RTOS libraries. Pre-built libraries for CCS, IAR, and
GCC are provided when you install TI-RTOS. However, if you want to change the compiler or linker
options, you may need to rebuild the libraries.

9.1.1 Building TI-RTOS for CCS
By default, TI-RTOS is ready to be rebuilt for use with CCS from a top-level make file called tirtos.mak.

If TI-RTOS is installed in c: \t1, you can print a list of available make rules by running the following
command from a command shell window:

cd <tirtos installs

o° o

../<xdctools>/gmake -f tirtos.mak

To rebuild the TI-RTOS drivers and several of its included components (SYS/BIOS, IPC, NDK, and UIA),
for example, you can run the following:

% ../<xdctools>/gmake -f tirtos.mak all

If you installed CCS and TI-RTOS in a location other than c:\t1i, you can edit the definition of
DEFAULT_INSTALLATION_DIR in tirtos.mak to point to this location. Note that all other product
installation locations are defined relative to the DEFAULT _INSTALLATION_DIR, but you can adjust them
as necessary. You can also pass in installation locations as necessary. For example to use a different
location for XDCtools, do the following:

)

% ../<xdctools>/gmake -f tirtos.mak XDCTOOLS_ INSTALLATION DIR=c:/ti/xdctools_version

The following list (from TI-RTOS for MSP43x for example) shows items you can change and sample
values. The tirtos.mak file differs for each device family. The version numbers in your copy of the
tirtos.mak file will match the versions of the components installed with TI-RTOS.

CCs_BUILD ?= true
DEFAULT INSTALLATION DIR := c:/ti
ti.targets.msp430.elf.MSP430X ?=$ (DEFAULT INSTALLATION DIR)/ccsvé/tools/compiler/msp430 4.3.1

XDCTOOLS_TNSTALLATION DIR ?= $ (DEFAULT INSTALLATION DIR)/xdctools_3 31 01 07 core
export XDCTOOLS JAVA HOME ?= ¢ (DEFAULT INSTALLATION DIR)/ccsvé/eclipse/jre

TIRTOS INSTALLATION DIR :=
BIOS INSTALLATION_ DIR ?
UIA INSTALLATION DIR ?
MSPWARE INSTALLATION DIR ?
E B ?

?

$ (DEFAULT INSTALLATION DIR)/tirtos msp43x_2 00 00 21
$ (TIRTOS_INSTALLATION DIR)/products/bios 6 41 00 42

$ (TIRTOS_INSTALLATION DIR)/products/uia_2_00_00 27
(
$
$

$ (TIRTOS_INSTALLATION DIR)/products/MSPWare 2_00_01_03a
MSP43 0HEADERS
MSP432HEADERS

= $(DEFAULT INSTALLATION DIR)/ccsvée/ccs_base/msp430/include
= $(DEFAULT INSTALLATION DIR)/ccsvé6/ccs_base/arm/include

If you are rebuilding on Linux, change all of the Windows paths in the tirtos.mak file to Linux paths.

The ccs_BUILD?=true flagin the tirtos.mak file causes TI-RTOS to be rebuilt for CCS by default.
Other supported tool-chains (such as IAR) also have flags that can be turned on to build for them as well.
If these are not needed, keep them turned off for a faster build.

SPRUHD4l—March 2015 Rebuilding TI-RTOS 115
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

Rebuilding TI-RTOS www.ti.com

9.1.2 Building TI-RTOS for IAR

By default, TI-RTOS is not rebuilt for use with IAR when you run the top-level tirtos.mak make file. To
rebuild TI-RTOS for IAR Embedded Workbench, follow these steps:

1. Editthe tirtos.mak file and find the following lines:

IAR BUILD ?= false
IAR COMPILER INSTALLATION DIR ?= C:/Program Files (x86)/IAR Systems/Embedded Workbench 6.5

2. Setthe IAR_BUILD flag to true in tirtos.mak. Alternately, you can pass a different value on the
make command line as follows:

% ../<xdctools>/gmake -f tirtos.mak all IAR BUILD=true

3. Change the IAR compiler installation directory to match the location where you installed IAR.
Alternately, you can pass a different value on the make command line as follows:

% ../<xdctools>/gmake -f tirtos.mak all IAR COMPILER INSTALLATION DIR=YOUR PATH

4. Modify the installation locations as needed for the components of TI-RTOS (SYS/BIOS, IPC, NDK
and UIA) that you want to rebuild for IAR.

For a faster build, you can turn off TI-RTOS building for CCS by setting the CCS_BUILD flag to false.

9.1.3 Building TI-RTOS for GCC

By default, TI-RTOS is not rebuilt for GCC when you run the top-level tirtos.mak make file. The GCC
code generator used is the Linaro distribution gcc-arm-none-eabi-4_7-2012qg4 version that ships with
CCS. To rebuild TI-RTOS with GCC, follow these steps:

1. Editthe tirtos.mak file and find the following lines:

GCC_BUILD ?= false
GCC_INSTALLATION DIR := $(DEFAULT INSTALLATION DIR)/ccsvé/tools/compiler/gcc-
arm-none-eabi-4 7-2013g3

2. Setthe above GCC_BUILD flagtotrue in tirtos.mak. Alternately, you can pass a value on the make
command line as follows:

% ../<xdctools>/gmake -f tirtos.mak all GCC BUILD=true

3. Ifyouinstalled CCS in a location other than c:\ti, change the path for GCC_INSTALLATION_DIR to
specify the correct location. Alternately, you can pass a different value on the make command line as
follows:

o\

../<xdctools>/gmake -f tirtos.mak all GCC_INSTALLATION DIR=YOUR PATH

4. Modify the installation locations as needed for the components of TI-RTOS (SYS/BIOS, IPC, NDK
and UIA) that you want to rebuild for GCC.

For a faster build, you can turn off TI-RTOS building for CCS and IAR by setting the CCS_BUILD and
IAR_BUILD flags to false.

116 Rebuilding TI-RTOS SPRUHD4I—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

I3 TEXAS
INSTRUMENTS
www.ti.com Rebuilding MSPWare's driverlib for TI-RTOS and Its Drivers
9.14 Rebuilding the TI-RTOS Drivers with the Debug Profile
By default, the TI-RTOS driver libraries are rebuilt with the release profile. The release profile sets
compiler flags to optimize libraries for performance. During the compilation process, this causes the
compiler to perform several operations to achieve better performance, one of which is to reorganize code.
Reorganized code is difficult to debug when stepping through code.
If you would like to step through driver library code during debugging, you can rebuild the driver libraries
without optimization by following these steps:
1. Open the tirtos.mak file and find lines similar to the following. (This example is from TI-RTOS for
SimpleLink.)
XDCARGS= \
profile='release' \
CCWareDir='$ (CCWARE_INSTALLATION DIR)' \
2. Change the profile parameter to 'debug':
XDCARGS= \
profile='debug' \
CCWareDir='$ (CCWARE_INSTALLATION DIR)' \
3. Rebuild the TI-RTOS drivers as follows:
% cd <tirtos_installs>
% ../<xdctools>/gmake -f tirtos.mak clean-drivers drivers
Your applications must be rebuilt to use the non-optimized TI-RTOS driver library. Once debugging is
complete, repeat the steps above setting profile='release’ to return to the optimized library.
9.2 Rebuilding MSPWare's driverlib for TI-RTOS and Its Drivers
The TI-RTOS drivers for MSP43x depend on MSPWare's driverlib as an abstraction layer to access
peripheral registers. This level of abstraction promotes code reusability and scales well for TI-RTOS
drivers, because device specifics are stored in driverlib.
To reduce the build time of CCS projects and to be consistent with other Tl driverlib components,
MSPWare's driverlib source files have been compiled into a library in the TI-RTOS installation.
TI-RTOS allows you to build for either MSP430, MSP432, or both. Set one of the following definitions in
the tirtos.mak file to false if you do not want to build for that target.
MSP430 BUILD ?= true
MSP432 BUILD ?= true
TI-RTOS provides prebuilt TI-RTOS drivers and prebuilt MSPWare driverlib libraries only for the
MSP430F5529, MSP430FR5969, and MSP432P401R. Libraries for other MSP43x devices can be
added by editing the tirtos.mak file. To build TI-RTOS drivers for other devices, add those devices to
SPRUHD4I—March 2015 Rebuilding TI-RTOS 117

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

Rebuilding Individual Components www.ti.com

the MSP430DEVLIST or MSP432DEVLIST variable (with spaces between the devices in the list). For
example, the following maodification to the tirtos.mak file causes MSPWare's driverlib and TI-RTOS
drivers to be built for the MSP430F5529, MSP430F6779, and MSP432P401R.

To build TI-RTOS driver libraries for other MSP430 devices; simply append the
device names to MSP430DEVLIST (separated by whitepsaces)

MSP430DEVLIST := \

MSP430F5529 \

MSP430F5527 \

MSP430F6459 \

etc...

H*+ HF H H*

MSP430DEVLIST := MSP430F5529 MSP430F6779

MSP432DEVLIST := MSP432P401R

After updating the necessary variables, rebuild the TI-RTOS drivers as follows:

cd <tirtos_installs

o° o

../<xdctools>/gmake -f tirtos.mak drivers

9.3 Rebuilding Individual Components
The MWare and TivaWare rebuilding mechanism is substantially different from the TI-RTOS rebuilding
mechanism. See the documentation for these products for details.
Driver libraries in the versions of MWare and TivaWare distributed with TI-RTOS have been rebuilt. For
details, see the TI-RTOS.README file in the top-level folder of the MWare and TivaWare components
within the TI-RTOS installation.

118 Rebuilding TI-RTOS SPRUHD4I—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

I3 TEXAS
Chapter 10
INSTRUMENTS SPRUHD4I—March 2015

Memory Usage with TI-RTOS

This chapter provides links to information about memory usage.

Topic Page
10.1 Memory Footprint Reduction 119
10.2 Networking Stack Memory Usagecovoun.. 131

10.1 Memory Footprint Reduction

Many configuration parameters impact the size (both code and data) of a TI-RTOS application. This
section discusses the approaches TI-RTOS takes to minimize the size of its examples. For a more
detailed discussion on how to reduce the size of the kernel, please refer to the SYS/BIOS User’s Guide
(SPRUEX3) appendix on "Minimizing the Application Footprint."

The TI-RTOS examples are divided into the following types of examples:

® Peripheral Examples. These examples are designed to demonstrate the usage of a peripheral or
feature. These examples are designed to have a small footprint and make use of many of the
strategies described in this section.

® Demo Examples. The demo examples are "kitchen-sink" examples; that is, they use a wide variety
of features. There is no overall design of the memory use strategy for these demos. Decisions were
made to allow the program to fit into the available memory of the target device, while still showcasing
multiple peripherals and features.

® Empty Examples. Two different "Empty" examples can be created with the New Project Wizard if
you are using CCS. These examples are intended as a starting point for new development. The two
different types of “Empty” projects are:

— Empty (Minimal) Project: Disables kernel features and debug capabilities to minimize the

footprint.
— Empty Project: Enables more kernel features and debug capabilities at the cost of a larger
footprint.
SPRUHD4|—March 2015 Memory Usage with TI-RTOS 119

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com/lit/pdf/spruex3

{J TEXAs
INSTRUMENTS

Memory Footprint Reduction www.ti.com

The footprint reduction approaches described in this section are generally not used in the "Empty"
examples, but are used in the "Empty (Minimal)" examples. The exceptions are that the SysMin module
and the custom BIOS library (with asserts and logging enabled) are used in the Empty examples. Any
other configuration changes described here can be made to the Empty examples if needed.

The peripheral examples (available in TI Resource Explorer in CCS) are designed to have a small
footprint. The UART examples are exceptions to this rule, because along with UART functionality they
are intended to show various approaches for debugging an application.

The following configuration changes help reduce both the data and code footprint in the TI-RTOS
peripheral examples. You may want to use these strategies in your own applications.

For most configuration changes, both the graphical (XGCONF) and script-based methods of modifying
the configuration are shown. Use whichever method you prefer.

Non-Instrumented TI-RTOS drivers: You can use either an instrumented or non-instrumented TI-RTOS
driver library. The instrumented library contains trace statements (Log_printN() calls) and assert checking
(Assert_isTrue() calls). The non-instrumented library does not contain these statements. All the
peripheral examples use the non-instrumented TI-RTOS driver library.

& uartecho.cfg 23 = O

» | TI-RTOS - Driver Options * & @

Welcome Svstem Chverview

 Library Selection Options

TI-RTO5 Driver Library Type
instrumented
@ non-instrumented

The library options above allow you to select either the
instrurnented or non-instrurnented TI-RTOS Drivers
runtime library.

An example’s *.cfg file contains statements like the following for the driver library:

var TIRTOS = xdc.useModule('ti.tirtos.TIRTOS') ;
TIRTOS.libType = TIRTOS.LibType Instrumented;

120

Memory Usage with TI-RTOS SPRUHD4l—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

www.ti.com

Memory Footprint Reduction

BIOS Custom Library: The kernel comes with both instrumented and non-instrumented libraries. In
addition, it can perform a custom build to include only functionality required by the application. The TI-
RTOS peripheral examples use the custom build. They also disable the kernel's logging and assert
checking. See the "Compiler and Linker Optimization" section of the SYS/BIOS User’s Guide for details.

* | TI-RTOS ' Products * SYSBIOS * BIOS - Basic Runtime Options

Welcome System Qverview Error Handling Device Support Advanced

+ Library Selection Options

SYS/BIOS library type
" Instrumented

" Mon-nstrumented
¥ Custom (Optimized)
™ Custom (Debug)

The library options above fllow vou to select pre-built libraries or rebuild the SYS)
BICS from sources based gn your application's configuration settings.

[Enable Asserts
[Enable Logz

&5

* Dynamic Instance Creatio

[Enable Diynamic Instance Cre

A savings in code and data size
disabling dynamic instance creati

 Runtime Memory Options
System (Hwi and Swi) stack size |
Heap size |
Heap section |

[use HeapTrack

Custom Compiler Options | —program_level_compile -03 -9 —optimize_with_debug

1

The heap configured above is us
C malloc{) and free() functions or

nnnnnnnn + +m Bldmremmes s =lla=iT im B

TI-RTOS | SYS/BIOS 52 | cfg Script|

If you edit configuration scripts directly, these statements have the same effect as the XGCONF settings

above:

var BIOS = xdc.useModule('ti.sysbios.BIOS');
BIOS.libType = BIOS.LibType Custom;
BIOS.logsEnabled = false;
BIOS.assertsEnabled = false;

SPRUHD4l—March 2015
Submit Documentation Feedback

Memory Usage with TI-RTOS 121

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

Memory Footprint Reduction www.ti.com

Minimal System Provider: The System module allows users to plug in different System Support
Proxies. Each proxy has pros and cons See Section 3.2.1, Output with printf(), page 3-29 for details about
the available System module proxies. Most TI-RTOS peripheral examples use the smaller SysMin proxy,
which uses an internal buffer to store System output. The size of the buffer is also reduced.

» » Products * SYSBIOS » System ! System - Module Settings = & @

Advanced

The Systemn module provides basic "printf" cutput and systern terminiation support.

[¥/] Add System to my configuration | » » » System * System Providers * SysMin - |
Advanced

* Required Settings))
The SysMin module provides buffer-based "back-end” support for the Sysf
minimal ANSI C runtime support and a memory buffer large encugh to hel

madule's functions.

System provider xdc.oruntime. SysMin

¥ Exit Handling Options Add SysMin to my configuration

Maxirmum ‘atexit’ functions 2 = Output Buffer ~ Qutput Op
Abort hook xde.runtime. Buffer size (chars] 128 Output funct
Bt hook xde.runtime. Buffer section null [V Flush outy

TI-RTOS | XDC/Systern 22 | XDC/SysMin " =
TI-RTOS | XDC/System ADC/SysMin 2 | cfg Script

If you edit configuration scripts directly, these statements have the same effect as the XGCONF settings
above:

var System = xdc.useModule ('xdc.runtime.System') ;
var SysMin = xdc.useModule ('xdc.runtime.SysMin') ;
System. SupportProxy = SysMin;

SysMin.bufSize = 128;

Note: The System output can be viewed in the RTOS Object Viewer (ROV) in CCS.

System Stack Size: The Hwi and Swi threads share a single System stack. Each device has a default
System stack size, which is set by the Program.stack property. Several TI-RTOS examples (especially
the MSP43x examples) do not use the default value. Instead, the Program.stack property is set in the
example’s .cfg file.

Note: The non-MSP43x examples do not reduce stack size as aggressively as the MSP43x examples.
This is because the non-MSP43x example’s source code (*.c and *.cfg) are generic and must run on
several different devices.

122 Memory Usage with TI-RTOS SPRUHD4l—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

www.ti.com Memory Footprint Reduction

To determine the best value for this property, each example was run with the default Program.stack
setting. After an example ran under all conditions, the ROV in CCS was used to examine Hwi usage. The
"Module" tab for Hwi objects shows the stack’s peak usage. The example’s Program.stack was set to a
size higher than the peak but lower than the default. For example:

TI-RTOS * Products * SYSBIOS * BIOS - Basic Runtime Options = & @
Dverview Error Handling Device Support Advanced =
tion Options * Dynamic Instance Creation Support
v type [Enable Dynamic Instance Creation
d A savings in code and data size can be achieved by
anted disabling dynamic instance creation.
imized)
wg) + Runtime Memory Options
ins above allow you to select pre-built libraries or rebuild the 5Y5/ System (Hwi and Swi) stack size | 517
25 based on your application's configuration settings. (I

Heap size | 0]
ts Heap section | null
] use HeapTrack
Options | —-program_level_compile -o3 -g —optimize_with_debug The heap configured above is used for the standard
C malloc() and free) functions or when the 'heap’ ILI
nnnnnnnn + bn Almemaesse =l ia KILIL I
[

ATOS |SYS/BIOS 52 | cfg Script|

If you edit configuration scripts directly, this statement has the same effect as the XGCONF setting above:

|Program.stack = 0x200;

SPRUHD4l—March 2015 Memory Usage with TI-RTOS 123
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS
Memory Footprint Reduction www.ti.com

Static Tasks: The majority of the examples statically create their Tasks in their *.cfg files. This reduces
the code footprint because code is not needed for functions such Task_create().

To statically create a task, go to the Instance panel for configuring the Task module and click Add.

»| » Products * SYSBIOS * Scheduling * Task - Instance Settings R
Module Advanced
« Tasks + Required Settings
Add ... Handle | n/a
T — Function I-.
Priority | /A

se the vital flag to prevent system exit until this thread exits
O Task is vital

+ Stack Control

Stack size [nja

Stack memory section | MA

Stack pointer [nja

TI-RTOS | Task 52 | cfg Script|

An example’s *.cfg file contains statements like the following to statically create an object used by the
example:

var taskParams = new Task.Params () ;
taskParams.instance.name = "taskFxn";

taskParams.stackSize = 0x300;

Program.global.task = Task.create("&taskFxn", taskOParams) ;

124 Memory Usage with TI-RTOS SPRUHD4l—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

www.ti.com

Memory Footprint Reduction

Task Stack Size: Each Task thread in the application has its own stack. Each device has a default Task
stack size. Many examples (especially the MSP43x examples) do not use the default value. Instead, the
Task.stackSize property is set in the example’s *.cfg file.

Note: The non-MSP43x examples do not reduce stack size as aggressively as the MSP43x examples.
This is because the non-MSP43x example’s source code (*.c and *.cfg) are generic and must run on

several different devices.

To determine the best value for this property, each example was run with the default stackSize. After

letting a example run under all conditions, the ROV in CCS was used to examine Task usage. The

"Detailed" tab for Task objects shows the stack peak usage. The stackSize for each Task was set to a
size higher than the peak but lower than the default. For example:

» » » SYSBIOS * Scheduling * Task - Instance Settings =
Module Advanced
+ Tasks + Required Settings

O

TI-RTOS | Task &2 | cfg Script

Handle echo
Function echoFxn

Priority 1

Use the vital flag to prevent systemn exit until this thread exits
[¥] Task is vital

« Stack Control

Stack size 768

Stack memory section .bssitaskStackSection
Stack pointer null

Stack heap null

@

m

If you edit configuration scripts directly, this statement has the same effect as the XGCONF setting above:

taskParams.stackSize = 0x300;

SPRUHD4l—March 2015
Submit Documentation Feedback

Memory Usage with TI-RTOS

125

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

Memory Footprint Reduction www.ti.com

Memory allocation: None of the TI-RTOS drivers allocate memory, except for the EMAC and
USBMSCHFatFs drivers. The examples do not allocate memory either, except for the networking (wired
and wireless) and USB examples. The examples statically create all kernel objects (such as Tasks and
Semaphores) in the *.cfg file. This is done because run-time creation of kernel object allocates memory
dynamically. Of course, for real applications, run-time object creation might be required.

Note that the networking stack allocates memory from a heap, so this approach cannot be used if the
networking stack is used.

» » » » + Heaps ' HeapMem - Module Settings = & |

Instance Advanced

The HeapMem module provides a variabledenath first-fit runtime heap manager that can be used with the Memory module. In most
cases, runtime allocation is handled by the default heap defined by the Memory module.

[add the HeapMem module to my configuration

'I'I-RTGS|HeapMem &3 | cfg Script|

»| TI-RTOS » Products » SYSBIOS * BIOS - Basic Runtime Options G
tem Civerview Error Handling Device Support Advanced
election Options * Dynamic Instance Creation Support
ibrary type [Enable Dynamic Instance Creation
=nted A savings in code and data size can be achieved by
Tumented disabling dynamic instance creation.
(Cptimized)
{Debug) + Runtime Memory Options
options abowve allow you to select pre-built ibraries or rebuild the sY5/ System {Hwi and Swi) stack size | 517
aurces based on your application’'s configuration settings.
Heap size | 1]
geerts Heap section | null
ans Clise HearTrack. ., —mr . i

4 I
TI-RTOS | SYS/BIOS &2 | cfg Script|

If you edit configuration scripts directly, disable dynamic memory allocation by removing the following
statement from an example’s *.cfg file:

| var HeapMem = xdc.useModule('ti.sysbios.heaps.HeapMem') ;

In addition, add the following statement to the example’s *.cfg file:

|BIOS.heapSize - 0;

126 Memory Usage with TI-RTOS SPRUHD4l—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

www.ti.com Memory Footprint Reduction

No Idle Task: The kernel, by default, has an Idle task that runs if no other thread is running. The Idle task
runs low-priority functions (for example, to check for stack overflows). For the MSP43x examples, the Idle
task is not enabled. This allows the MSP43x to be placed in a power-saving mode.

* » Products * SYSBIOS * Scheduling * Task - Module Settings -~ &
+ Global Task Options + Default Task Options

Mumber of priorities | 4 Default stack size | 512

All blocked function | null Default stack section | .be=:taskStackSection

Initialize stack Default stack heap | null

[check for task stack overflow
[pelete terminated tasks

« Idle Task Options

[Enable Idle Task
Idle Task is wital

Idle Task stack size 512

Idle Task stack section I ssitaskStackSection

1| | 3

TIRTOS |Task 3 | cfg Script|

If you edit configuration scripts directly, this statement has the same effect as the XGCONF setting above:

|Task.enableIdleTask = false;

SPRUHD4l—March 2015 Memory Usage with TI-RTOS 127
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

Memory Footprint Reduction www.ti.com

Stack Checking: The kernel, by default, verifies that the System stack and Tasks stacks have not
overflowed. The System stack checks are performed in the Idle Task. The Task stack checks are
performed at every context switch. The top of the stack is examined to make sure it has the correct
"magic" value. Since a overflowed Task or System stack is show in ROV, the Task stack check was
removed from the MSP43x examples to reduce the code footprint. See the SYS/BIOS User’s Guide for
details about these properties.

* » Products * SYSBIOS * Scheduling * Task - Module Settings -~ &
+ Global Task Options + Default Task Options

Number of priorities | 4 » » Products * SYSBIOS * Scheduling * Hwi - Modul
All blocked function | null Instance Advanced

Initialize stack The Hwi module provides a portable interface to define and synchronize with hardware ir
[Check for task stack overfiow ;izgnts itself to using this madule for hardware interrupt synchronization can be used wi

[celete terminated tasks))
Add the portable Hwi management module to my configuration

¥ Idle Task Options Device-specific Hwi Support

[Enable Idle Task
Idle Task is wital

Idle Task stack size 512

« Dispatcher + Stack Management

Enable interrupt nesting Initialize stack

[Enable software interrupt support [chedk for stack overflow
Idle Task stack section | =s:taskStackSec
« Enable Tazk support

TIRTOS | Task 3¢ | cfg Seript| Enable IRP tracking

TI-RTOS | Hwi i3 | cfg Script|

If you edit configuration scripts directly, these statements have the same effect as the XGCONF settings
above:

Task.checkStackFlag = false;
Hwi.checkStackFlag = false;

128 Memory Usage with TI-RTOS SPRUHD4l—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

www.ti.com Memory Footprint Reduction

Software interrupts (Swis) disabled: The kernel, by default, enables software interrupts. For examples
that do not use Swis, this type of thread is disabled. See the SYS/BIOS User’s Guide for details about
Swis. Note the EMAC driver uses a Swi, so networking examples cannot use this trick.

* * Products * SYSBIOS *|BIOS - Basic Runtime Options = & @

-~

+ Threading Options + Platform Sett
Enable Tasks (When disabled, the Task module is not configurable) These settings =

g 9
[] Enable Software Interrupts (When disabled, the Swi module is not configurable) that runs your a| E
Enable Clock Manager (When disabled, the Clock module is not configurable) CPU clock frequ

C Standard Library Lock | GatefMutex -

] m b
TI-RTOS | SYS/BIOS 22 | cfg Script

If you edit configuration scripts directly, this statement has the same effect as the XGCONF setting above:

BIOS.swiEnabled = false;

Number of Task Priorities: The kernel allows Tasks to have different priorities. See the SYS/BIOS
User’s Guide for details about Task priorities. The TI-RTOS examples lower the maximum number of
Task priorities to 4.

* * Products * SYSBIOS * Scheduling * Task - Module Settings -

Instance Advanced

The Task module allows you to create one or more prioritized threads, each with a separate stack,
that can block on one or more events,

Add the Task threads module to my configuration

« Global Task Options + Default Task Options
Mumber of priorities | 4 Default stack size | 512
All blocked function | rull Default stack section | bss:taskStackSection
Initialize stack Default stack heap | null

[chedk for task stack overflow

If you edit configuration scripts directly, this statement has the same effect as the XGCONF setting above:

|Task.numPriorities = 4;

SPRUHD4l—March 2015 Memory Usage with TI-RTOS 129
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

Memory Footprint Reduction www.ti.com

Number of atexit functions: The kernel allows System atexit() functions to be registered. See the
Kernel Runtime APIls and Configuration (cdoc) online help for more about the xdc.runtime.System
module’s atexit() functions. The TI-RTOS examples lower the maximum number of System atexit
functions to 2.

» » Products * SYSBIOS * System ! System - Module Settings = 2 (

Advanced

The System module provides basic "printf™ output and system terminiation support.
Add System to my configuration

+ Required Settings

System provider | wde.runtime. SysCallback

+ Exit Handling Options + Extended Format Options
Maximurm ‘atexit’ functions | 2 System support | B8l WhES Y sF
Abort hook | xdc.runtime. System. abartStd
Exit hook | wdc.runtime, System. exitStd

TI-RTOS | KDC/System £ | cfg Script|

If you edit configuration scripts directly, this statement has the same effect as the XGCONF setting above:

| System.maxAtexitHandlers = 2;

Kernel exception handling (for ARM): By default the kernel plugs in an exception handler to make
debugging an exception easier. The exception handler can be removed to reduce code footprint. It is
recommended that you leave the exception handler in place during development.

| » » SYSBIOS ' Target Specific Support * M3 (Ducati) * Hwi - Module Settings

i of interrupts supparted by the device, setting this pa

=] Override number of interrupts ACTUALLY USED will result in les
The user can override the default exception handling behavior by used than otherwise.

providing their own function (ie ‘&myExcHandler): For applications that use very few interrupts, this ca
RAM memory savings.

Exception handler | null

By default, an exception handler corresponding to the "Enable full
exception decoding” selection will be installed.

If zet to 'null’, low level code will simply loop forever when an
exception occurs, Setting the handler to 'null’ also results in the
least amount of code and data memory being consumed,

Mo ROV exception information is available when a user exception
handler is configured, Meither will any of the above "User
exception ..." settings be functional.

TI-RTOS | M3/Hwi &3 | cfg Script|

130 Memory Usage with TI-RTOS SPRUHD4l—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

{J TEXAs
INSTRUMENTS

www.ti.com Networking Stack Memory Usage

If you edit configuration scripts directly, these statements have the same effect as the XGCONF setting:

var m3Hwi = xdc.useModule('ti.sysbios.family.arm.m3.Hwi') ;
m3Hwi .excHandlerFunc = null;

Strings: Since no logging or asserts are enabled for the TI-RTOS examples, the strings associated with
those facilities can be omitted. However, removing the strings for logging and asserts also removes
additional strings. See the Kernel Runtime APIls and Configuration (cdoc) online help for more about the
xdc.runtime.Text module’s isLoaded property.

» XDCtools * Diagnostics * Text - Module Settings S o @

Advanced

The Text module provides string management services that enables you te minimaize the static string data
required on the runtime target.

Add Text to my configuration

= Basic Options * Default Instance Names

[Load text into target memory

Anonymous instance name {unknown-instance-name}

MULL instance name {ermnpty-instance-name}

Static instance name {static-instance-name}

These names are used in situations where the name of an
instance is needed by the target but it's not provided. Making
these strings shorter will reduce your target data footprint.

TI-RTOS | KD/ Text &2 | cfg Script

If you edit configuration scripts directly, this statement has the same effect as the XGCONF setting above:

|Text.isLoaded = false;

10.2 Networking Stack Memory Usage

See TI-RTOS Networking Stack Memory Usage on the Texas Instruments Wiki for details about to
adjusting memory usage of the networking stack (NDK).

SPRUHD4I—March 2015

Memory Usage with TI-RTOS 131
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://processors.wiki.ti.com/index.php/MCU_SDK_Networking_Stack_Memory_Usage
http://www.ti.com

I3 TEXAS
INSTRUMENTS

Appendix A

SPRUHD4l—March 2015

Revision History

Table A-1 lists the significant changes made in recent versions of this document.

Table A—1. Revision History

Revision Chapter Location Additions/Modifications/Deletions
SPRUHDA4I Preface Current software version number is v2.12.
Overview Section 1.9 and | Added TI-RTOS Network Services
Chapter 6
Board-Specific Section 4.1 Support for MSP432 has been added.
Drivers Section 5.3 and | Added Camera driver and I2S driver.
Section 5.7
Section 5.5 GPIO driver has been modified significantly.
SPRUHD4H Preface Current software version number is v2.11.
Section 1.1 and | CCWare support is provided in TI-RTOS for SimpleLink
Section 1.8.5 Wireless MCUs.
Instrumentation Section 2.4.2 Configuring instrumented or non-instrumented drivers has
and Drivers and Section been moved from individual driver modules to the TIRTOS
5.2.1 module.
Debugging Section 3.1.1 A section on debugging applications by stepping through
TI-RTOS code has been added.
Board-Specific Section 4.1 Support for SimpleLink boards has been added.
Drivers Section 5.2.6 Information about driver implementations for SimpleLink
and Section devices has been added.
5.2.7
Section 5.8 The PWM driver has been added.
Section 5.12.5 Added information about configuring the UART driver to
and Section use DMA.
5.12.6
Rebuilding Section 9.1.4 Information about rebuilding the drivers with the debug

profile has been added.

SPRUHD4l—March 2015
Submit Documentation Feedback

Revision History 132

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I

i3 TEXAS

INSTRUMENTS
www.ti.com
Table A—1. Revision History
Revision Chapter Location Additions/Modifications/Deletions
SPRUHD4F Preface Current software version number is v2.00.
About Section 1.1 TI-RTOS now has separate installers for various device

families. There is a separate TI-RTOS Getting Started
Guide for each installer.

Section 1.2 TI-RTOS has several components with TI-RTOS
component names. For example, SYS/BIOS is also called
the TI-RTOS Kernel.

Instrumentation Section 2.1 System Analyzer also includes the views available from the

Tools > RTOS Analyzer menu.

Section 2.2 and

The configuration properties for LoggingSetup have

Section 2.3.3 changed.
Section 2.5 The menu commands and dialogs used to open System
Analyzer views have changed.
Board-Specific Section 4.1 TI-RTOS examples have been added for the MSP-
EXP430FR5969LP LaunchPad and EK_TM4C1294XL
Evaluation Kit.
Drivers Section 5.2.8 EUSCI versions of the MSP430 driver have been added.
Memory Section 10.1 Pictures of configuration settings made in XGCONF are
included to supplement the script-based statements. Also,
instructions for removing the kernel exception handler have
been added.
SPRUHD4E Preface Current software version number is v1.21.
About Section 1.1 and | Added MSP-EXP430F5529 Experimenter Board.
Section 4.1
Debugging Section 3.1 ROV also available in IAR Embedded Workbench.
Rebuilding Section 9.1.3 Added section on building TI-RTOS for the GCC code
generator.
Memory Usage Section 10.1 Two versions of the Empty example are now provided. The
new one uses minimal memory. Also added removal of
HeapMem enabling statement to description of how to
disable dynamic memory allocation.
SPRUHD4D Preface Current software version humber is v1.20.
About Section 1.1 Several new boards added to the table.
Section 1.8.3 New section added for MSP430Ware.
Section 1.11 Links added for MSP430Ware, MSP430 boards, and

BoosterPacks.

SPRUHD4l—March 2015
Submit Documentation Feedback

Revision History 133

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

i3 TEXAS
INSTRUMENTS

www.ti.com

Table A—1. Revision History

Revision Chapter Location Additions/Modifications/Deletions
Examples Chapter 2 Details about individual examples moved to the readme
files within the example projects. Other information previ-
ously in Chapter 2 moved to the TI-RTOS Getting Started
Guide.
Instrumentation Section 2.3 to New section added on converting an example to perform
Section 2.3.3 run-time uploading of instrumentation data.
Boards Section 4.1 Several new boards added to the table.
Drivers Section 5.2.8 New section added on Hwi objects and ISRs for MSP430
devices.
Section 5.14.1.3 | New section added on USB reference modules for
MSP430.
Section 5.17 to WiFi driver can now be configured to support calling it from
Section 5.17.1 multiple threads.
Utilities -- The SysFlex module has been deprecated.
Section 7.2 to The UARTMon module has been added.
Section 7.2.2
Rebuilding Section 9.1.1 The contents of tirtos.mak have changed.
Section 9.1.2 New section added for building TI-RTOS for IAR.
Section 9.2 New section added for rebuilding MSP430Ware libraries.
Memory Section 10.1 New section added to discuss ways to reduce the memory
footprint.
134 Revision History SPRUHD4l—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

I3 TEXAS
INSTRUMENTS

A

APIs

common 43

EMAC driver 51

GPIO driver 55

12C driver 57

SDSPI driver 72

UART driver 81

USB device and host modules 92
USBMSCHFatFs driver 86
Watchdog driver 94
assert handling 27
Available Products list 16

B

board.c files 35
build flow 33

C

C28x

support 34

Camera driver 38, 49
CC3200-LAUNCHXL 34
ccxml file 36

CDC device 38

COM Port 105
components 9
Concerto 34
configuration

build flow 33
configuro tool 33
controlSUITE 12

other documentation 13

D

debugging 26
Demo examples 119
DK-TM4C123G 34
DK-TM4C129X 34
drivers 12, 38

Index

SPRUHD4I—March 2015

Index

E

EK_TM4C1294XL 34
EK-LM4F120XL 34
EKS-LM4F232 34
EK-TM4C123GXL 34
EMAC driver 38, 51
Empty example 119
Ethernet driver 38, 51
exception handling 27

F

F28M35H52C1 34
F28M36P63C2 34
FatFs driver 71, 86
flash drives 38, 86

G

GPIO driver 38,53

GPIO pin
configuration 35

GUI Composer 108

H

HID device 38

12C driver 38, 57

12S driver 38, 64

instrumentation 15

instrumented libraries 23

IPC 9,11

other documentation 11

SPI driver for multicore applications 38

K

keyboard
device 92
host 92

SPRUHD4l—March 2015
Submit Documentation Feedback

Index

135

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I

13 TEXAS
INSTRUMENTS

www.ti.com

L

LCD driver 38

LEDs

configuration 35
linker command file 35
LM4F120H5QR 34
LM4F232H5QD 34
Load logging 17

Log module 23

EMAC driver 52

GPIO driver 56

12C driver 63

UART driver 84
USBMSCHFatFs driver 88
viewing messages 24
Watchdog driver 95, 99
logging 17
LoggingSetup module 16

M

M3 microcontroller 34
memory reduction 119
MessageQ 38

mouse

device 92,93

host 92

MSC device 38

MSC host 86
MSP430F5529 34
MSP430FR5969 34
MSP432P401RLP 34
MSP-EXP430F5529LP 34
MSP-EXP430FR5969LP 34
MSP-EXP432P401RLP 34
MSPWare 9, 13
multicore applications 38
MWare 9,10, 12

other documentation 13

N

NDK 9, 11,51
other documentation 11
non-instrumented libraries 23

P

Peripheral examples 119
PIN driver 38

printf() function 29
Printf-style output 27, 29
products directory 9
PWM driver 38

R

rebuilding

TI-RTOS 115
ROV tool 25, 26, 29
EMAC 52

GPIO 56

I2C 63

SDSPI 72

UART 84
Watchdog driver 96
WiFi driver 99
RTOS Analyzer
debugging with 24
RTOS Object View (ROV) 26

S

SDcards 71

SDSPI driver 38, 71

serial devices 93
simulator, debugging with 36
SPI(SSI) bus 71

SPI driver 38

SPIMessageQTransport transport 38, 79

static configuration 33
Stellarisware 9
SYS/BIOS 9, 10

logging 17

other documentation 10
SysCallback module 29
SysMin module 29
configuration 30
SysStd module 30
System Analyzer 10, 15, 27
System module 29
configuration 30
System_printf() function 29

T

Target Configuration File 36
TI-RTOS 8

TivaWare 13
TM4C123GH6PGE 34
TM4C123GH6PM 34
TM4C1294NCPDT 34
TM4C129XNCZAD 34
TMDXDOCK28M36 34
TMDXDOCKH52C1 34
TMDXDOCKH52Cl1.c file 35

U

UART driver 38, 81
UARTMon module 102
UIA 9,10, 15

other documentation 10
USB controller 86

136 Index

SPRUHDA4l—March 2015

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com

USB Descriptor Tool 90, 91
USB driver 92
USBMSCHFatFs driver 38, 86

W

Watchdog driver 38, 94
APIs 94

WiFi driver 38

X

XDCtools 9, 14
build settings 33
other documentation 14

SPRUHD4I—March 2015

Submit Documentation Feedback

Index

137

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4I
http://www.ti.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements
and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service
per JESDA48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such
information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's
terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty
in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent
Tl deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each
component is not necessarily performed.

Tl assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products
and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services
are used. Information published by Tl regarding third-party products or services does not constitute a license to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the
patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of significant portions of Tl information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Tl is not responsible or liable for
such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by Tl for that component or
service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive
business practice. Tl is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related require-
ments concerning its products, and any use of TI components in its applications, notwithstanding any applications-related infor-
mation or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and
implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen
the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify Tl and its
representatives against any damages arising out of the use of any TlI components in safety-critical applications.

In some cases, Tl components may be promoted specifically to facilitate safety-related applications. With such components, TI's
goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety
standards and requirements. Nonetheless, such components are subject to these terms.

No Tl components are authorized for use in FDA Class Ill (or similar life-critical medical equipment) unless authorized officers of
the parties have executed a special agreement specifically governing such use.

Only those Tl components which Tl has specifically designated as military grade or “enhanced plastic” are designed and intended
for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use
of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for
compliance with all legal and regulatory requirements in connection with such use.

Tl has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any
case of use of non-designated products, Tl will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap Tl E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303 Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

‘\ Y MOSCHIP RU g)?ﬂ%?aﬂ:wx KOMMOHEHTOB +7495668 12 70

© BMECTE Mbl CO3LLAEM BYOYLLEE B8 info@moschip.ru

O6LLecTBO C orpaHMYeHHON oTBETCTBEHHOCTBIO «MocHuny WMHH 7719860671 / KIMNM 771901001
Appec: 105318, r.Mockea, yn.LLlepbakoBckas 4.3, odmc 1107

[aHHbIn KOMMNOHEHT Ha TeppuTopun Poccuinickon depepauumn

Bbl MoxeTe npuobpectu B komnaHun MosChip.

[lnsa onepaTtuBHOro ocdopmnenus 3anpoca Bam HeobxoomMmo nepenT No faHHON CChISKe:

http://moschip.ru/get-element

Bbl MoxeTe pa3mecTuTb Y Hac 3aka3 and nboro Bawero npoekTa, 6yab To
cepuiiHoe Npomn3BOACTBO MM pa3paboTka eguHUYHOro npubopa.

B Hawem acCcCopTnMeHTe npencTasiieHbl Begywmne MmpoBblie NMPoOnN3BOANTENIN aKTUBHbIX U
NacCUBHbIX 3JTIEKTPOHHbIX KOMIMOHEHTOB.

Hawen cneumanusauuen sBnseTcs NOCTaBKa 3N1EKTPOHHOMW KOMMOHEHTHON 6a3bl
OBOWHOro Ha3HayeHus, npoaykummn Takmx npounssoantenen kak XILINX, Intel
(ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits,
Amphenol, Glenair.

CoTpynHMyecTBO € rnobanbHbIMU OUCTPUOLIOTOPaMN 3NEKTPOHHBIX KOMIMOHEHTOB,
npegocTraBnseT BO3MOXHOCTb 3aKa3blBaTb 1 MOfly4aTb C MEXAYHAPOOHbIX CKNaaos
npakTuyecku nobon nepeyeHb KOMNOHEHTOB B ONTUMarbHble aAnsa Bac cpoku.

Ha Bcex aTanax pa3paboTKu 1 NPOM3BOACTBA HalLW NapTHEPbI MOTYT NOMy4YnTb
KBanumunpoBaHHy NOAAEPXKY OMNbITHbIX UHXEHEPOB.

Cuctema MeHeXMeHTa KayecTBa KOMNaHum oteevaeT TpeboBaHNAM B COOTBETCTBUM C
rOCT P MCO 9001, TOCT PB 0015-002 n 3C P, 009

Odomc no pabote c OPUANHECKUMU NTULLAMMU:

105318, r.Mockea, yn.lWepbakosckaa a.3, ocdomc 1107, 1118, AL, «LUepbakoBcKkuniny»
TenedoH: +7 495 668-12-70 (MHOrokaHanbHbIN)
dakc: +7 495 668-12-70 (006.304)

E-mail: info@moschip.ru

Skype otaena npogax:
moschip.ru moschip.ru_6
moschip.ru_4 moschip.ru_9

mailto:info@moschip.ru

