

RF Daughter Boards for ADF7020 & ADF7020-1 ISM Band Transceiver

Preliminary Technical Data

EVAL-ADF7020-XDBX

FEATURES

ADF7020 & ADF7020-1 ISM Band Transceiver Radio module

Can plug into basic mother board (EVAL-ADF70XXMB) or development platform with embedded microcontroller (EVAL-ADF70XXMB2)

RF daughter-card designed on low-cost 2-layer PCB as reference design for cost-sensitive applications

Combined output matching circuit optimized for best consists and Transver efficiency.

best sensitivity and Tx power efficiency Software programmable modulation schemes; GFSK/ FSK/ ASK/OOK/G-ASK PC Software for Register Programming Loop filter setup for operation at 38.4kbps

GENERAL DESCRIPTION

The ADF7020 and ADF7020-1 are FSK/GFSK/ASK/OOK transceivers which are designed for operation in the licensed and unlicensed VHF/UHF bands from 80MHz to 956MHz. There are different versions of the evaluation board available which are optimized for particular frequency bands. The daughter-board contains all the required components for operation of the radio, including loop filter, output matching, antenna and connector to mother board.

To control the ADF7020/ADF7020-1 register settings via the PC you will need the EVAL-ADF70XXMB mother board. This technical note describes usage with the EVAL-ADF70XXMB boards. This is the recommended board for detailed evaluation and RF testing of the parts.

The EVAL-ADF70XXMB2 controller board comes as part of the ADF702X Development Kit. This mother board allows the user to set up a network of units using the ADIismLINK protocol and thus evaluate the parts performance in a networked environment. Further details and documentation on the EVAL-ADF70XXMB2 development platform is available on the www.analog.com website.

Table 1: Ordering Codes

Board Number	RF Band	Rx Data Rate	Tx Data Rate ¹	Loop Bandwidth ²
EVAL-ADF70XXMB ³	-	-	-	-
EVAL-ADF70XXMB2 ⁴	-	-	-	-
EVAL-ADF7020DB1	902 MHz – 928 MHz	Up to 200 kbps	Up to 50 kbps	50 kHz
EVAL-ADF7020DB2	862 MHz - 870 MHz	Up to 200 kbps	Up to 50 kbps	50 kHz
EVAL-ADF7020DB3	433 MHz - 445 MHz	Up to 200 kbps	Up to 50 kbps	50 kHz
EVAL-ADF7020-1DB4	405 MHz - 435 MHz	Up to 200 kbps	Up to 50 kbps	50 kHz
EVAL-ADF7020-1DB6	470 MHz - 510 MHz	Up to 200 kbps	Up to 50 kbps	50 kHz
EVAL-ADF7020-1DB7	310 MHz – 340 MHz	Up to 200 kbps	Up to 50 kbps	50 kHz
EVAL-ADF7020-1DB8	128 MHz – 142 MHz	Up to 200 kbps	Up to 50 kbps	50 kHz
EVAL-ADF7020-1DB5	Adjustable	-	-	-

- 1. The data rate may be increased by increasing the PLL Loop Bandwidth, see Page10 or use ADIsimPLL.
- 2. Optimized for FSK. For ASK or OOK typically need to increase the Loop BW to greater than 100kHz to avoid VCO pulling
- 3. Simple mother board for direct register programming and radio performance evaluation.
- 4. Controller mother board to run ADIismLINK protocol for range testing, PER measurements , system development etc.

Rev. Pr (

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

HARDWARE DESCRIPTION

The RF module, which is plugged into the mother board, consists of the ADF7020 or ADF7020-1 device, output matching circuit optimized for operation in a certain frequency band, harmonic filter, PLL loop filter, de-coupling and xtal. This RF module provides a low-cost, optimally matched RF reference design which you can use as a starting point for your design. A low-cost BOM is achieved by using a 2-layer PCB, a low-cost xtal, and a simple combined output matching circuit which eliminates the need for an external switch.

There are two different versions of the daughter card, one which uses a low-cost dielectric harmonic filter from Murata the other which uses a standard LC harmonic filter. Gerber files for both are available for download on the ADF7020 product page. Schematics are shown in Figures 9 and 10. The DB1 and DB2 boards use the dielectric filter while all other boards use the LC filter.

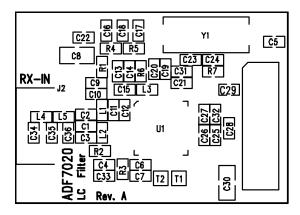


Figure 1: .LC Filter version-silkscreen

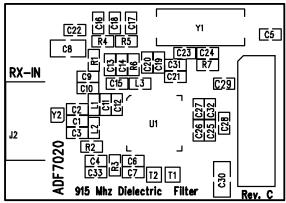


Figure 2. Dielectric Filter version - silkscreen

The silk screen for the basic mother board is shown in Figure 4.

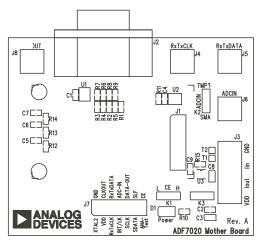


Figure 3.. Mother Board Silkscreen – component side view

The mother board (MB) comes with a cable for connecting to the printer port of a PC. The cable diagram is shown in Figure 5. The MB can be supplied directly with an external supply of 2.3V to 3.6V or a battery voltage from 3V to 9V by switching in a regulator using jumper K3. There is an on-board 11.0592MHz AT crystal. The crystal combined with 33pF shunt capacitors provide the low cost frequency reference for the local oscillator.

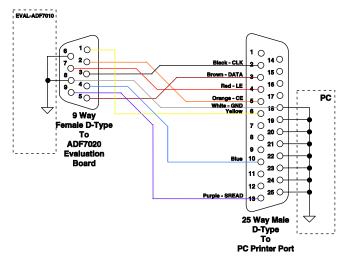


Figure 4. PC Cable Diagram

The necessary SMA connectors are included to interface the part to the measurement instrument (Normally a spectrum analyzer in Tx mode and a RF signal generator in Rx mode). Care should be taken to ensure that no DC level exists at the ANTENNA SMA.

The parallel port has 5V voltage levels, so there is a voltage divider to bring this down to levels acceptable to the ADF7020 /ADF7020-1 device.

Output Matching Circuit

The ADF7020/ADF7020-1 exhibits optimum performance in terms of sensitivity, transmit power, and current consumption, only if its RF input and output ports are properly matched to the antenna impedance. For cost-sensitive applications, the ADF7020/ADF7020-1 is equipped with an internal Rx/Tx switch, which facilitates the use of a simple combined passive PA/LNA matching network as outlined in Figure 6. Please refer to Datasheet for more details.

For ease of design the matching and harmonic filter components are provided for the most commonly used bands (see Table5-8) Please refer to Application Note AN-764 and Application Note AN-859 for more details on PA/LNA matching for the ADF7020 and ADF7020-1 devices.

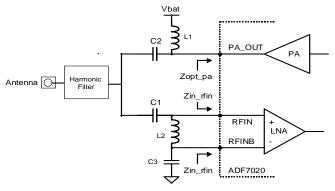


Figure 5.. LNA/PA Output Matching Circuit

CHOICE OF VCO INDUCTOR FOR ADF7020-1

The ADF7020-1 uses the same VCO core as the ADF7020 but with the VCO tank inductor (L3) external to allow the user to set the operating frequency. The frequency of oscillation can be

approximated using the following formula:

$$F_{vco} = \frac{1}{2\pi\sqrt{\left(L_{\mathit{INT}} + L_{\mathit{EXT}}\right) \times \left(C_{\mathit{VAR}} + C_{\mathit{FIXED}}\right)}}$$

The length of the PCB track to the external inductor pad will effect the total $L_{\rm EXT}$: The ADF7020-1 VCO Frequency range vs. external inductor value as measured on the EVAL-ADF7020-1DBX boards is shown in Figure 7. If you are using a different length of PCB track to the ADI Evaluation boards you need to take this into consideration. ADIsimPLL will give you the total external inductance (chip inductor + PCB track) needed for a given frequency range so that your desired frequency band lies in the middle of the range where possible. It is also possible to shift the frequency by use of the VCO Adjust bits which has the effect of adjusting $C_{\rm VAR}$.

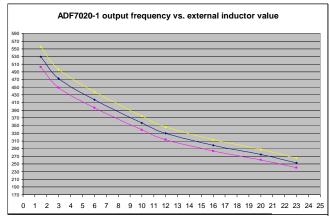


Figure 6. Direct Output Frequency vs. External Inductor Value(L3)

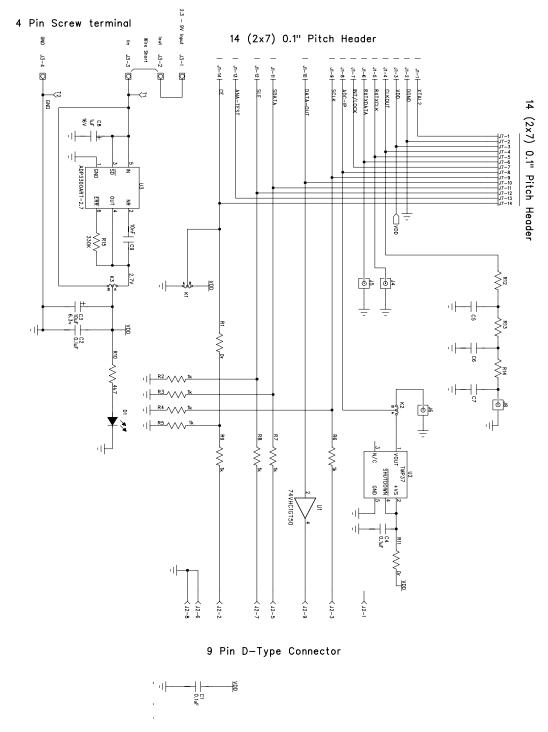


Figure 8. EVAL-ADF70XXMB Mother Board Circuit Diagram

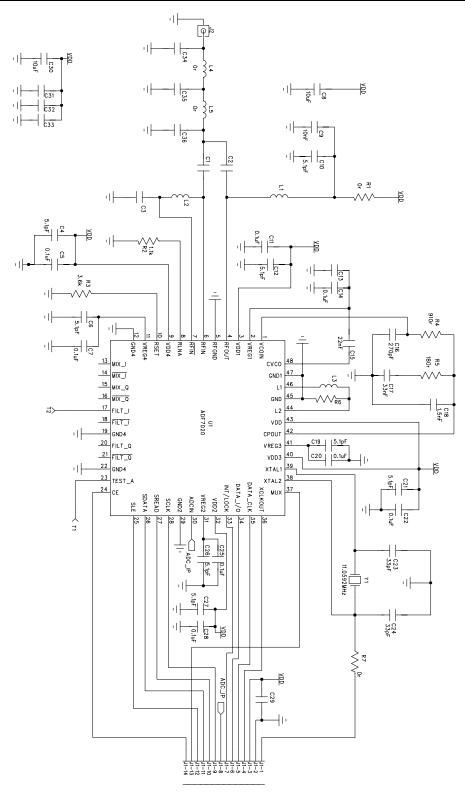


Figure 9. RF Module (LC harmonic filter) Circuit Diagram used for ADF7020DB3 and for all ADF7020-1 daughter boards (DB4, DB5, DB6, DB7 and DB8)

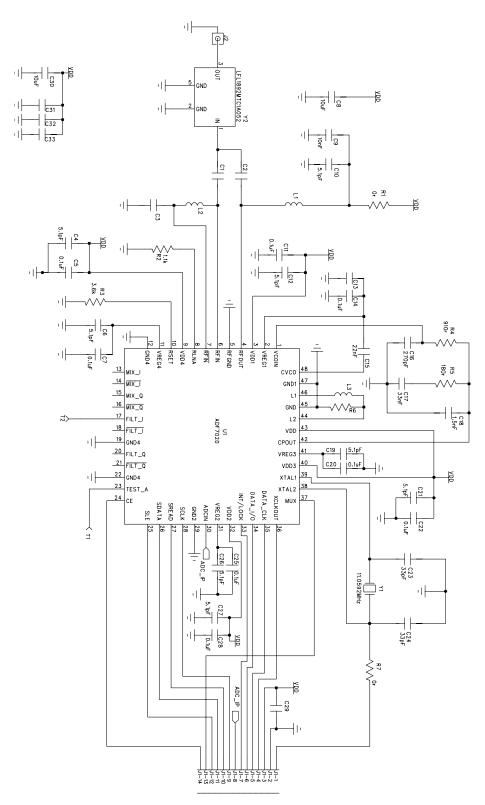


Figure 10. RF Module (Dielectric Filter version) Circuit Diagram used for ADF7020DB1 and ADF7020DB2

SOFTWARE DESCRIPTION

The ADF7020 and ADF7020-1 software applications can be downloaded from the Analog Devices Website at http://www.analog.com/Analog_Root/static/techSupport/desig_nTools/evaluationBoards/downloadSoftware_ISM.html. This will run the Installshield setup utility that will install all information and software relevant to the ADF70XX Devices. Note, it is recommended to turn off your anti-virus software during install as this can interfere with the install process. Choose the directory you wish to install into and proceed. Once the program is setup, run ADF7020RevX.X.exe to launch the program for the ADF7020 or ADF7020-1RevX.X.exe for the ADF7020-1. The window shown below should appear – you will need a screen resolution of 1024 x 768 to use the program.

This is the main window and is divided up into several sections some of which have their own sub-windows which are indicated by a raised button. For example in the PLL Options section, you enter the sub-window by clicking on the "Synth Settings" button. The green and red toggle buttons turn a feature on or off.

After selecting Tx or Rx mode, you can select the required

modulation scheme by clicking on the drop-down box in the Modulation Options section. In the FSK panel you should enter the deviation frequency, data-rate, demodulation type and IF Bandwidth. In Rx mode all the appropriate clock frequencies are chosen for you based on these inputs. You will need to click on the AFC/Advanced button to force the software to auto-calculate these clock frequencies which will be displayed on the AFC/Advanced sub-window. This window also contains the AFC function and ability to select the various demod locking features (See Register 4 Description in Datasheet)

Another feature of the software is to display the output of the Readback pin on the ADF7020 (see Readback section in ADF7020 Datasheet for more details). This can display the battery voltage, temperature, external ADC input or frequency error on the screen.

For direct programming of the ADF7020/ADF7020-1 , click on the Registers button. This allows you to enter Hex values into individual registers. This is useful for de-bugging the register settings that you will use in your embedded microcontroller

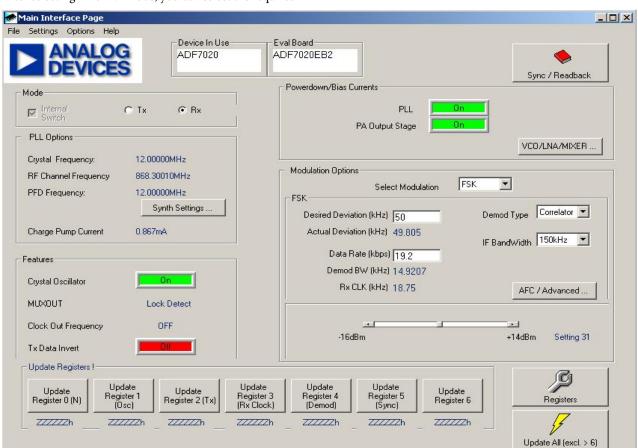


Figure 11. Software Front Panel Display

GETTING STARTED WITH THE ADF7020 AND ADF7020-1

The evaluation performed will be specific to each application, but this section will enable users to familiarise themselves with the features of the ADF7020/ADF7020-1.

Initial Setup

As described in the Hardware Description section, the evaluation board is divided into two; an RF module containing the ADF7020 and a mother-board which accepts the RF module and contains the power supply block and some I/O pins. You need to mount the RF module onto the mother-board, ensuring correct alignment by having the drill-holes in the module above the screw-holders on the mother board.

Apply 3V to the VDD pin, with the regulator jump switch K3 connected to position B. An ammeter can be placed in series with the supply by connecting to Iin and Iout, otherwise place a wire short across Iin and Iout. The ChipEnable link (K1) is initially connected to GND, so you should connect this to VDD for normal operation. Once CE is High, the part will become active and approximately 2.2mA is drawn. The default conditions on power-up are:

Crystal Oscillator circuit	ON
----------------------------	----

CLKout ON (div-by-8)

PLL OFF PA OFF Regulators ON

Muxout Regulator Ready

To check the part has powered-up correctly, monitor the XCLKOUT pin (pin4 on mother-board test-header), this should be a 3Vp-p square wave with a frequency of XTAL_frequency/8. Also the voltage on the Regulator pins should be between 2.0V and 2.2V, you can check this by probing the top of C5 (VREG4 pin) on the RF module.

Evaluating the ADF7020 in Rx and Tx modes

Before setting up an RF link, it is usually informative to evaluate the ADF7020/ADF7020-1 in either Tx mode or Rx mode. The typical setup for this is shown in Figures 12 and 13. To select between Tx and Rx modes in the software select the required mode in the top left of the front display panel.

Note: All of the ADF7020 and ADF7021 daughter boards have an 11.0592MHz xtal except for the ADF7020-1DB7 which has a 9.8304MHz xtal. In the following text for simplicity it will be assumed that the crystal is 11.0592MHz.

Test Procedure for the ADF7020 in Tx Mode

Use a supply of 3V and the setup as shown in Figure 12. At first you can just connect RxTxData to GND.

1. Ensure that the CE Link is connected to High. The current drawn should be typically 2.2mA. The regulators are now powered-up.

 Check XCLKOUT (Pin4 on test-header) using a scope. Signal should be 3Vp-p square wave with frequency equal to XTAL_FREQ/8. This is the power-up default. The crystal is oscillating and the XCLKOUT feature is working correctly.

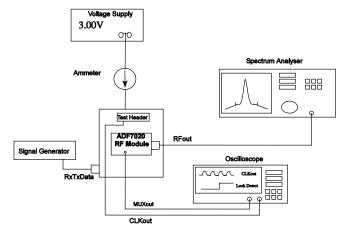


Figure 12. Evaluation board setup for Tx mode

- 3. Using the ADF7020 or ADF7020-1 Software, setup the following Tx parameters:
 - a. Ensure Tx Mode is selected in Mode sub-window
 - b. Click on Synth Settings and set
 - i. RF Channel Frequency (Direct Output) to your desired frequency.
 - ii. You can also toggle the VCO divide-by-2 button to get half this frequency. This divider is placed outside the PLL loop and thus does not affect the N-Divider settings. For example to obtain 433MHz from the ADF7020, you should set the Direct Output to 866MHz and enable divide-by-2.
 - iii. Fcrystal = 11.0592MHz
 - iv. FPFD = 11.0592MHz
 - v. Hit Calculate and Load Now
 - c. Click Charge-pump current, set this to 1.44mA
 - d. Bias Currents Click VCO/LNA/Mixer... button
 - i. VCO Adjust = 0 (See datasheet for recommended settings)
 - ii. Set VCO bias to 2.75mA (ADF7020)

For ADF7020-1 set VCO-bias according to datasheet table 5

- iii. Set LNA Bias = 800uA
- iv. Set Mixer Linearity = Normal
- v. Set PA bias to 9uA
- vi. Hit Load Now and Return to Front
 Panel
- e. Features Sub-window
 - i. Set crystal oscillator ON
 - ii. Tx Data Invert ON(this will give high level as RxTxData connected to GND).
- f. Modulation Options
 - i. Select OOK
 - ii. Using slide-bar change the power setting to 43.
- 4. Hit the Update All Button on the Software
- 5. Examine the output using the spectrum analyser. The output should be locked to the programmed output frequency and the output power should be approximately +10dBm. There will be some error in the output frequency due to error in the xtal, you should note this as it will be useful for debuging the Rx section. You can adjust the output power using the output power slide-bar in the software.
- 6. Re-enter the Synth Settings sub-window and change the output frequency and verify it covers your required frequency range.
- 7. In-band Phase Noise is measured by narrowing the span on the spectrum analyser to 10kHz and turning Marker Noise ON. A typical measurement for 0dBm output power is -90dBc/Hz at 5kHz offset. ADISimPLL will help you predict the expected phase noise numbers.
- You can now apply modulation to the TxDATA pin and monitor spurious, adjacent channel power and harmonic levels.

Test Procedure for the ADF7020/ADF7020-1 in Rx mode

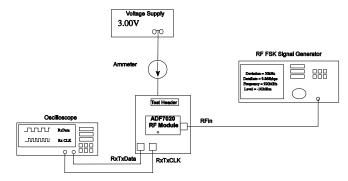
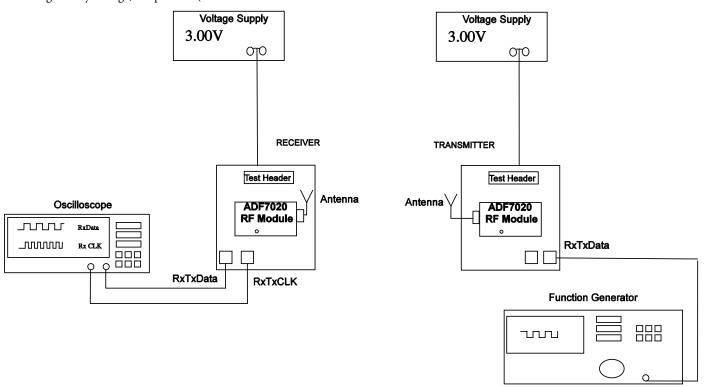


Figure 13. Evaluation board setup for Rx mode

Use a supply of 3V and the setup as shown in Figure 13. It is important to note that the ADF7020/ADF7020-1 uses a low-IF architecture where the IF is operating at 200kHz. This means the LO frequency should be set to 200kHz below the incoming RF frequency. The ADF7020 and ADF7020-1 software takes care of this automatically for you.

- 9. Setup your signal generator to output an FSK signal at the desired frequency, and -70dBm level. Select the data-rate (9.6kbps) and deviation frequency(20kHz).
- 10. Using the ADF7020/ADF7020-1 software, setup the following Rx parameters:
 - a. Ensure Rx Mode is selected in Mode sub-window
 - In Synth Settings select the RF Frequency to the signal generator Output frequency. The LO will automatically be programmed to RF – 200kHz.
 - c. Modulation Options
 - i. Select FSK Modulation
 - ii. Set Desired Deviation = 20kHz
 - iii. Set Data-Rate = 9.6 (kbps)
 - iv. Set Demod Type = Linear
 - v. Set IF Bandwidth = 150kHz
 - vi. Click on AFC/Advanced button and enable AFC. This will compensate for errors in the crystal if the error at RF is less than +/-50kHz. Step5 in the Tx Mode setup will tell you the error.
- 11. Hit the Update All Button on the Software
- 12. Using the scope, probe the RxTxData pin and RxTxCLK. They should be 3V p-p square-waves with frequencies of 4.8kHz and 9.6kHz respectively. Ensure that these square-waves are triggered correctly and are not flickering.


- 13. If you don't have a built-in BER tester you can estimate the sensitivity point, by reducing the level on the frequency generator until you see the RxTxData waveform 'flickering' which corresponds to errors in the recevied data. Typically if you see a flicker/error once per second you can roughly estimate this to be the sensitivity point. Note the level on the Signal Generator when this happens. For this setup it should be –102dBm +/- 2dBm.
- 14. Change the demodulator type to correlator in the software and click Update All. Measure the sensitivity again. It should now be better than -106dBm.

Readback Function

It's possible to enable the on-chip ADC on the ADF7020/ADF7020-1 and readback a selection of parameters, including battery voltage, temperature(from either the on-board

temperature sensor or TMP37 IC device), Frequency Error, External voltage and RSSI.

To activate this feature, click on the Sync/Readback Toggle button. In the sub-window select the type of readback required. The appropriate value should be displayed on the screen. In Tx mode the ADC is powered-off by default to save power, so in order to readback correctly you need to enable the ADC. This can be done by clicking the status button in the ADC Status section to "ON" before clicking the Readback button. Since the ADC is used in Rx mode for the AGC function, the ADC is powered-on by default in this mode. Thus in Rx mode, valid battery voltage, temperature, frequency error and external voltage readback data can only be retrieved when AGC is disabled. This can be done by manually setting bit 19 (Gain Control) in register 9 (AGC register) low. In practical cases the user would typically do a battery volatage readback in Tx mode

SETTING UP AN RF LINK USING THE ADF7020DBX OR ADF7020-1DBX

The EVAL-ADF70XXMB2 boards which contain an embedded microcontroller running a wireless network protocol is the simplest way to setup and RF Link. If you are using the EVAL-ADF70XXMB boards it is still possible to setup a basic link using the antennas and software provided. The most straightforward way to do this is to have one board acting as a dedicated Transmitter and one board as the dedicated Receiver. This configuration is shown above. Note if you want to use one board as a remote unit, you can connect a battery to the powerblock. If the battery voltage is greater than 3.6V you should use the 3V regulator on the mother-board by connecting the jump switch K3 to position A.

Tx Setup

- 1. Configure function generator to output a 3Vp-p square-wave at 4.8kHz.
- 2. Follow steps 3a. to 3d. on Page 6.
- 3. Select FSK Modulation and set desired deviation to 20kHz and output power setting to 48.
- 4. Hit the Update All button and check the signal on a Spectrum Analyszer to ensure this is outputting at the correct frequency and level.
- Connect the antenna provided and disconnect the PC cable from the board.

Rx Setup

Connect the antenna to the Receiver and the PC cable to the receiver mother-board

Follow steps 9. to 12. on Page8.

- 1. The de-modulated signal should appear on the scope.
- 2. You should now be in a position to apply your own modulation and de-modulate this correctly.

SETTING PLL LOOP BANDWIDTHS

The Eval Boards have been built using a 50 kHz PLL LBW. From measurements made on SNR and modulation quality of the FSK signal, it is recommended to use a LBW > 1.5 x Datarate.

So for the defulat filter on the Eval Board, this gives a max. datarate close to 38.4kbps. If you want to operate the board at higher data-rates you need to modify the loop filter according

to the values in Tables 2 & 3 for the ADF7020. For the ADF7020-1 it is recommended to use ADIismPLL to design the loop filter.

ADISimPLL V3.0 allows you to simulate these effects and design loop filters for various data-rates and different RF Output frequencies.. For output frequency/xtal/data-rate combinations not covered below you should use ADISimPLL V3.0 (or later).

Table 2: ADF7020DB1 FILTER (902-928MHZ)

Xtal	Data Rate	PLL LBW	Min Channel Spacing	R Divider	lcp	C18	R5	C17	R4	C16
11.0592M	0.3 – 38.4kbps	50k	150kHz	1	1.44mA	1.5nF	180r	33nF	910r	270pF
11.0592M	38.4 - 76.8 kbps	115k	200kHz	1	1.44mA	560pF	680r	5.6nF	1.2k	180pF
11.0592M	76.8 - 153.6kbps	215k	500kHz	1	1.44mA	150pF	1.3k	1.5nF	2.5k	30pF
11.0592M	153.6 - 200 kbps	250k	500kHz	1	1.44mA	100pF	1.5k	1.2nF	3k	27pF
14.7456M	0.3 – 38.4kbps	50k	150kHz	1	1.44mA	2.7nF	220r	39nF	470r	1.2nF
14.7456M	38.4 - 76.8 kbps	115k	200kHz	1	1.44mA	560pF	510r	8.2nF	1.2k	220pF
14.7456M	76.8 - 153.6kbps	215k	500kHz	1	1.44mA	150pF	1k	2.2nF	2.2k	56pF
14.7456M	153.6 - 200 kbps	250k	500kHz	1	1.44mA	120pF	1.1k	1.8nF	2.5k	39pF

Note: Need to set VCO_Adjust=0 to give correct Kvco

Table 3:ADF7020DB2/3 Filter (433M/868MHz)

Xtal	Data Rate	PLL LBW	Min Channel Spacing	R Divider	lcp	C18	R5	C17	R4	C16
11.0592M	0.3 - 38.4kbps	50k	150kHz	1	1.44mA	3.3nF	180r	56nF	470r	1.2nF
11.0592M	38.4 - 76.8 kbps	115k	200kHz	1	1.44mA	1.8nF	220r	22nF	470r	680pF
11.0592M	76.8 - 153.6kbps	215k	500kHz	1	1.44mA	470pF	430r	6.8nF	910r	220pF
11.0592M	153.6 - 200 kbps	250k	500kHz	1	1.44mA	270pF	620r	3.3nF	1.2k	120pF
14.7456M	0.3 - 38.4kbps	50k	150kHz	2 (See Note4)	1.44mA	1.8nF	270r	22nF	560r	820pF
14.7456M	38.4 - 76.8 kbps	115k	200kHz	2	1.44mA	1.2nF	360r	15nF	750r	470pF
14.7456M	76.8 - 153.6kbps	215k	500kHz	2	1.44mA	270pF	750r	3.3nF	1.5k	120pF
14.7456M	153.6 - 200 kbps	250k	500kHz	2	1.44mA	150pF	1k	2.2nF	2k	68pF

Notes:

- 1. Deviation typ. +/- (Baud-rate/2)
- 2. Xtal frequency needs to be chosen so that CDR_CLK is within 3% of (32 x Data-rate). For example if you have 12MHz xtal and want 180kbps, allowable range is 181.87kbps to 193.125kbps, need to adjust data-rate or xtal accordingly
- 3. For filter designed with 12MHz xtal (11.0592MHz should have minimal effect on phase margin)
- 4. Nmin=31, so for 433MHz => PFDmax=13.96MHz

BILL OF MATERIALS

Table 4. Bill Of Materials for the EVAL-ADF7020DBX and EVAL-ADF7020-1DBX Daughter Boards (Common to all versions)

Qty	Name	Value	Tolerance	PCB Decal	Manufacturing Part No.
8	C5,C7,C11,C14,C20, C22,C25,C28	0.1uF	±10%	0402	
2	C8,C30	10uF	±10%	0805	
1	C9	10nF	±10%	0402	
1	C15	22nF	±10%	0402	
8	C4,C6,C10,C12,C19, C21,C26,C27	5.1pF	±0.5pF	0402	
2	C23,C24	33pF	±5%	0402	
5	C13,C29,C31,C32,C33	Not Inserted		0402	
1	J1			HEADER14	
1	J2			SMA_EDGE_RF	
2	R1, R7	Or	±5%	0402	
1	R2	1.1k	±5%	0402	
1	R3	3.6k	±5%	0402	
	R6	Not Inserted		0402	
	T1			TESTPOINT	
	T2			TESTPOINT	
1	U1			LFCSP-48	ADF7020BCPZ/ ADF7020- 1BCPZ

Table 5. Bill Of Materials for components specific to EVAL-ADF7020DB1 Daughter Board

Qty	Name	Value	Tolerance	PCB Decal	Manufacturing Part No.
1	C1	2.7pF		0402	GRM1555C1H2R7CZ01D
1	C2	8.2pF		0402	GRM1555C1H8R2CZ01D
1	C3	3.0pF		0402	GRM1555C1H3R0CZ01D
1	L1	4.3nH		0402	Coilcraft 0402CS-4N3X_JLW
1	L2	8.7nH		0402	Coilcraft 0402CS-8N7X_JLW
	L3	Not inserted		0402	
1	R4	910r	±5%	0402	
1	R5	180r	±5%	0402	
1	C16	270pF	±10%	0402	
1	C17	33nF	±10%	0402	
1	C18	1.5nF	±10%	0402	
1	Y1	11.0592MHz	±30ppm / 20pF	HC49_4H_SMX	
1	Y2			LFL18924MTC1A05	Murata LFL18924MTC1A05

Table 6. Bill Of Materials for components specific to EVAL-ADF7020DB2 Daughter Board

Qty	Name	Value	Tolerance	PCB Decal	Manufacturing Part No.
1	C1	2.7pF		0402	GRM1555C1H2R7CZ01D
1	C2	8.2pF		0402	GRM1555C1H8R2CZ01D
1	C3	3.0pF		0402	GRM1555C1H3R0CZ01D
1	L1	4.3nH		0402	Coilcraft 0402CS-4N3X_JLW
1	L2	8.7nH		0402	Coilcraft 0402CS-8N7X_JLW
	L3	Not Inserted		0402	
1	R4	470r	±5%	0402	
1	R5	180r	±5%	0402	
1	C16	1.2nF	±10%	0402	
1	C17	56nF	±10%	0402	
1	C18	3.3nF	±10%	0402	
1	Y1	11.0592MHz	±30ppm / 20pF	HC49_4H_SMX	
1	Y2			LFL18924MTC1A05	Murata LFL18924MTC1A05

Table 7. Bill Of Materials for components specific to EVAL-ADF7020DB3 Daughter Board

Qty	Name	Value	Tolerance	PCB Decal	Manufacturing Part No.
1	C1	4.7pF		0402	
1	C2	10pF		0402	
1	C3	6.8pF		0402	
1	L1	13nH		0402	Coilcraft 0402CS-13NX_JLW
1	L2	27nH		0402	Coilcraft 0402CS-27NX_JLW
	L3	Not Inserted		0402	
1	L4	22nH		0402	Coilcraft 0402CS-22NX_JLW
1	L5	20nH		0402	Coilcraft 0402CS-20NX_JLW
1	R4	910r	±5%	0402	
1	R5	180r	±5%	0402	
2	C34,C36	Not Inserted		0402	
1	C35	6.8pF		0402	
1	Y1	11.0592MHz	±30ppm / 20pF	HC49_4H_SMX	

Table 8. Bill Of Materials for components specific to EVAL-ADF7020-1DB4 Daughter Board.

Qty	Name	Value	Tolerance	PCB Decal	Manufacturing Part No.
Matching	'	1	1		1
1	C1	4.7pF		0402	
1	C2	8.2pF		0402	
1	C3	4.7pF		0402	
1	L1	18nH		0402	Coilcraft 0402CS-18NX_JLW
1	L2	36nH		0402	Coilcraft 0402CS-36NX_JLW
VCO Tank	Inductor				
1	L3	6.2nH	2%	0402	Coilcraft 0402CS-6N2X_GLU
Harmonic	Filter	•			
1	L4	27nH		0402	Coilcraft 0402CS-27NX_JLW
1	L5	30nH		0402	Coilcraft 0402CS-30NX_JLW
1	C35	5.6pF		0402	
2	C34,C36	Not Inserted		0402	
Loop Filte	er		•		
1	R4	1.2k	±5%	0402	
1	R5	560r	±5%	0402	
1	C16	390pF	±10%	0402	
1	C17	15nF	±10%	0402	
1	C18	1000pF	±10%	0402	
1	Y1	11.0592MHz	±30ppm / 20pF	HC49_4H_SMX	

Table 9. Bill Of Materials for components specific to EVAL-ADF7020-1DB6 Daughter Board.

Qty	Name	Value	Tolerance	PCB Decal	Manufacturing Part No.				
Matching	Matching								
1	C1	3.9pF		0402					
1	C2	8.2pF		0402					
1	C3	3.9pF		0402					
1	L1	13nH		0402	Coilcraft 0402CS-13NX_JLW				
1	L2	30nH		0402	Coilcraft 0402CS-30NX_JLW				
VCO Tank	Inductor	•	•	•					
1	L3	2.7nH	2%	0402	Coilcraft 0402CS-2N7X_GLU				
Harmonic	Filter	•	•	•					
1	L4	18nH		0402	Coilcraft 0402CS-18NX_JLW				
1	L5	20nH		0402	Coilcraft 0402CS-20NX_JLW				
1	C35	5.6pF		0402					
2	C34,C36	Not Inserted		0402					
Loop Filte	er		•	•					
1	R4	800r	±5%	0402					
1	R5	400r	±5%	0402					
1	C16	680pF	±10%	0402					
1	C17	22nF	±10%	0402					
1	C18	1500pF	±10%	0402					
XTAL	•	<u> </u>	•	<u> </u>					
1	Y1	11.0592MHz	±30ppm / 20pF	HC49_4H_SMX					

Table 10. Bill Of Materials for components specific to EVAL-ADF7020-1DB7 Daughter Board.

Qty	Name	Value	Tolerance	PCB Decal	Manufacturing Part No.				
Matching	Matching								
1	C1	5.6pF		0402					
1	C2	10pF		0402					
1	C3	6.8pF		0402					
1	L1	30nH		0402	Coilcraft 0402CS-30NX_JLW				
1	L2	56nH		0402	Coilcraft 0402CS-56NX_JLW				
VCO Tank	Inductor								
1	L3	13nH	2%	0402	Coilcraft 0402CS-13NX_GLU				
Harmonic	Filter								
1	L4	51nH		0402	Coilcraft 0402CS-51NX_JLW				
1	L5	47nH		0402	Coilcraft 0402CS-47NX_JLW				
1	C35	6.8pF		0402					
2	C34,C36	Not Inserted		0402					
Loop Filte	r								
1	R4	1.5k	±5%	0402					
1	R5	680r	±5%	0402					
1	C16	330pF	±10%	0402					
1	C17	10nF	±10%	0402					
1	C18	820pF	±10%	0402					
XTAL	•		•	•					
1	Y1	9.8304MHz	±30ppm / 20pF	HC49_4H_SMX					

Table 11. Bill Of Materials for components specific to EVAL-ADF7020-1DB8 Daughter Board.

Qty	Name	Value	Tolerance	PCB Decal	Manufacturing Part No.				
Matching	Matching								
1	C1	12pF		0402					
1	C2	18pF		0402					
1	C3	10pF		0402					
1	L1	100nH		0603	Coilcraft 0603CS-R10X-JLU				
1	L2	200nH		0603	Coilcraft 0603CS-R20X-JLU				
VCO Tank	Inductor	·	•	•					
1	L3	22nH	2%	0603	Coilcraft 0402CS-22NX_GLU				
Harmonic	Filter		•	•					
1	L4	150nH		0603	Coilcraft 0603CS-R15X-JLU				
1	L5	130nH		0603	Coilcraft 0603CS-R13X-JLU				
1	C35	15pF		0402					
2	C34,C36	Not Inserted		0402					
Loop Filte	r	·	•						
1	R4	1.0k	±5%	0402					
1	R5	390r	±5%	0402					
1	C16	470pF	±10%	0402					
1	C17	15nF	±10%	0402					
1	C18	1000pF	±10%	0402					
XTAL	•	·	•	•	·				
1	Y1	11.0592MHz	±30ppm / 20pF	HC49_4H_SMX					

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9