

General Description

The MAX6338 guad voltage monitor is capable of monitoring up to four supplies without any external components. A variety of factory-trimmed threshold voltages and supply tolerances are available to optimize the MAX6338 for specific applications. The selection includes input options for monitoring +5.0V, +3.3V, +3.0V, +2.5V, +1.8V, and -5.0V voltages. An additional high-input impedance comparator option can be used as an adjustable voltage monitor, general-purpose comparator, or digital level translator.

Each of the monitored voltages is available with trip thresholds to support power-supply tolerances of either 5% or 10% below the nominal voltage. An internal bandgap reference ensures accurate trip thresholds across the extended (-40°C to +85°C) operating temperature range.

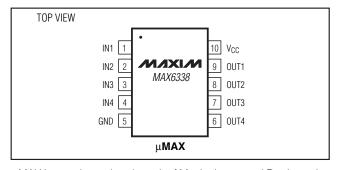
The MAX6338 consumes 25µA (typ) supply current and operates with supply voltages from +2.5V to +5.5V. An internal undervoltage lockout circuit forces all four digital outputs low when VCC drops below the minimum operating voltage. The four digital outputs all have weak internal pull-ups to VCC, allowing wire-ORed connection. Each input threshold voltage has an independent output.

The MAX6338 is available in a 10-pin µMAX® package.

Applications

Telecommunications High-End Printers

Desktop and Notebook Computers


Data Storage Equipment

Networking Equipment

Industrial Equipment

Set-Top Boxes

Pin Configuration

µMAX is a registered trademark of Maxim Integrated Products, Inc.

Features

- ♦ Monitors Four Voltages (Factory Programmed or User Adjustable)
 - +5.0V, +3.3V, +3.0V, +2.5V, +1.8V, -5.0V (nominal) or User-Adjustable Settings
- ♦ Low 25µA Supply Current
- ♦ Four Independent, Open-Drain, Active-Low **Outputs**
- ♦ +2.5V to +5.5V Supply Voltage Range
- ♦ Guaranteed from -40°C to +85°C
- ♦ No External Components Required
- ♦ Small 10-Pin µMAX Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX6338_UB*	-40°C to +85°C	10 μMAX

*Insert the desired letter from the Selector Guide into the blank to complete the part number.

Devices are available in both leaded and lead-free packaging. Specify lead free by adding the + symbol at the end of the part number when ordering.

Selector Guide

	NOMINAL INPUT VOLTAGE					
PART	IN1 (V)	IN1 IN2 IN3		IN4 (V)	SUPPLY TOLERANCE (%)	
MAX6338AUB	5	3.3	2.5	Adj*	10	
MAX6338BUB	5	3.3	2.5†	Adj*	5	
MAX6338CUB	5	3.3	1.8	Adj*	10	
MAX6338DUB	5	3.3	1.8†	Adj*	5	
MAX6338EUB	5	3.0	2.5	Adj*	10	
MAX6338FUB	5	3.0	2.5†	Adj*	5	
MAX6338GUB	5	3.0	1.8	Adj*	10	
MAX6338HUB	5	3.0	1.8†	Adj*	5	
MAX6338IUB	5	3.3	2.5	1.8	10	
MAX6338JUB	5	3.3	2.5†	1.8†	5	
MAX6338KUB	Adj*	3.3	2.5	Adj*	10	
MAX6338LUB	Adj*	3.3	2.5†	Adj*	5	
MAX6338MUB	5	3.0	Adj*	-5	10	
MAX6338NUB	5	3.0	Adj*	-5	5	
MAX6338OUB	5	3.3	Adj*	-5	10	
MAX6338PUB	5	3.3	Adj*	-5	5	

^{*}Adjustable voltage based on +1.23V internal threshold. External threshold voltage can be set using an external resistor-divider. † Nominal input voltages for 1.8V and 2.5V are specified for 10%

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

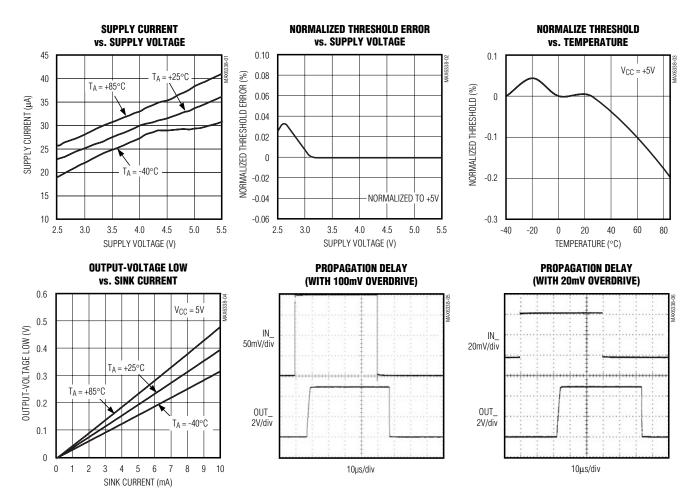
Terminal Voltage (with respect to GND)		Continuous Power I
V _C C	0.3V to +6V	10-pin μMAX (de
Output Voltages (OUT_)	0.3V to +6V	Operating Tempera
Input Voltages (IN_) (except -5V)	0.3V to +6V	Storage Temperatu
Input Voltage (-5V input)		Junction Temperatu
Continuous OUT_ Current	20mA	Lead Temperature

Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
10-pin µMAX (derate 5.6mW/°C above +70	°C)444mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($V_{CC} = +2.5V$ to +5.5V, $T_{A} = -40$ °C to +85°C, unless otherwise noted. Typical values are at $T_{A} = +25$ °C and $V_{CC} = +5V$, unless otherwise noted.) (Note 1)


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Supply Voltage Range	Vcc		+2.5		+5.5	V	
Supply Current		V _{CC} = +3V	+3V 25		50		
	Icc	V _{CC} = +5V		35	65	μΑ	
		V _{IN} _ = input threshold voltage (+1.8V, +2.5V, +3.0V, +3.3V, +5.0V)		25	40		
Input Current (Note 2)	I _{IN} _	V _{IN} _ = 0 to V _{CC} (input threshold voltage =1.23V)	-0.1		+0.1	μΑ	
		V _{IN} _ = -5V (input threshold voltage = -5V)		-10	-20		
+5.0V (-5%) Threshold	V _{TH}	V _{IN} decreasing	4.5	4.63	4.75	V	
+5.0V (-10%) Threshold	V _{TH}	V _{IN} decreasing	4.25	4.38	4.50	V	
+3.3V (-5%) Threshold	V _{TH}	V _{IN} decreasing	3.0	3.08	3.15	V	
+3.3V (-10%) Threshold	V _{TH}	V _{IN} decreasing	2.85	2.93	3.00	V	
+3.0V (-5%) Threshold	V _{TH}	V _{IN} decreasing	2.7	2.78	2.85	V	
+3.0V (-10%) Threshold	V _{TH}	V _{IN} decreasing	2.55	2.63	2.70	V	
+2.5V (-10%) Threshold	V _{TH}	V _{IN} decreasing	2.13	2.19	2.25	V	
+1.8V (-10%) Threshold	V _{TH}	V _{IN} decreasing	1.53	1.58	1.62	V	
-5.0V (+5%) Threshold	V _{TH}	V _{IN} increasing	-4.75	-4.63	-4.50	V	
-5.0V (+10%) Threshold	V _{TH}	V _{IN} increasing	-4.5	-4.38	-4.25	V	
Adjustable Threshold	V _{TH}	V _{IN} decreasing	1.20	1.23	1.26	V	
Threshold Voltage Temperature Coefficient				60		ppm/°C	
Threshold Hysteresis	VTHYST			0.3		%	
Propagation Delay	t _{pd}	V _{IN} _ = V _{TH} to (V _{TH} - 50mV) or V _{TH} to (V _{TH} - 50mV)		20		μs	
		V _{CC} = 5V, I _{SINK} = 2mA			0.4		
Output Low Voltage	V _{OL}	V _{CC} = 2.5V, I _{SINK} = 1.2mA			0.4	V	
		V _{CC} = 1V, I _{SINK} = 50μA			0.4	7	
Output High Voltage	V _{OH}	V _{CC} > 2.5V, I _{SOURCE} = 6μA (minimum)	0.8 x V ₀	CC		V	

Note 1: 100% production tested at +25°C. Overtemperature limits guaranteed by design.

Note 2: Guaranteed by design.

Typical Operating Characteristics

 $(V_{CC} = +5V, T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Description

PIN	NAME	FUNCTION				
1	IN1 Input Voltage 1. See the Selector Guide for monitored voltages.					
2	IN2 Input Voltage 2. See the <i>Selector Guide</i> for monitored voltages.					
3	IN3 Input Voltage 3. See the Selector Guide for monitored voltages.					
4	IN4	Input Voltage 4. See the Selector Guide for monitored voltages.				
5	GND	Ground				
6	OUT4	Output 4. OUT4 goes low when V_{IN4} falls below its absolute threshold. OUT4 is open drain with a $10\mu A$ internal pullup to V_{CC} .				
7	OUT3	Output 3. OUT3 goes low when V_{IN3} falls below its absolute threshold. OUT3 is open drain with a $10\mu A$ internal pullup to V_{CC} .				
8	OUT2	Output 2. OUT2 goes low when V_{IN2} falls below its absolute threshold. OUT2 is open drain with a $10\mu A$ internal pullup to V_{CC} .				
9	OUT1	Output 1. OUT1 goes low when V_{IN1} falls below its absolute threshold. OUT1 is open drain with a $10\mu A$ internal pullup to V_{CC} .				
10	Vcc	Power Supply. Connect V_{CC} to a +2.5V to +5.5V supply. An undervoltage lockout circuit forces all OUT_pins low when V_{CC} drops below 2.5V.				

Detailed Description

The MAX6338 is a low-power ($25\mu A$), quad voltage monitor designed for multivoltage systems. Preset voltage options for +5.0V, +3.3V, +3.0V, +2.5V, +1.8V, and -5.0V make these quad monitors ideal for applications such as telecommunications, desktop and notebook computers, high-end printers, data storage equipment, and networking equipment.

The MAX6338 has an internally trimmed threshold that minimizes or eliminates the need for external components. The four open-drain outputs have weak (10 μ A) internal pullups to V_{CC}, allowing them to interface easily with other logic devices. The MAX6338 can monitor power supplies with either 5% or 10% tolerance specifications, depending on the selected version. An additional high-input-impedance comparator option can be used as an adjustable voltage monitor, general-purpose comparator, or digital level translator.

The weak internal pullups can be overdriven by external pullups to any voltage from 0 to +5.5V. Internal circuitry prevents current flow from the external pullup voltage to V_{CC}. The outputs can be wire-ORed for a single "power good" signal.

The MAX6338 has either one or two auxiliary inputs and two or three factory-programmed threshold voltages, or four fixed voltages. The inverting input of all comparators is connected to a 1.23V bandgap reference for all positive voltages. The noninverting terminals are accessible through internal resistive voltage-dividers with preset factory threshold voltages. In the case of auxiliary (AUX) input, the positive terminal of the comparator is accessible directly for setting the threshold for the monitored voltage.

When any of the inputs (IN1-IN4) are higher than the threshold level, the output is high. The output goes low as the input drops below the threshold voltage monitor. The undervoltage lockout circuitry remains active and the outputs remain low with VCC down to 1V (Figure 1).

Applications Information

Hysteresis

When the voltage on one comparator input is at or near the voltage on the other input, ambient noise generally causes the comparator output to oscillate. The most common way to eliminate this problem is through hysteresis. When the two comparator input voltages are equal, hysteresis causes one comparator input voltage to move quickly past the other, thus taking the input out of the region where oscillation occurs. Standard comparators require hysteresis to be added through the use of external resistors. The external resistive network usually provides a positive feedback to the input in order to cause a jump in the threshold voltage when

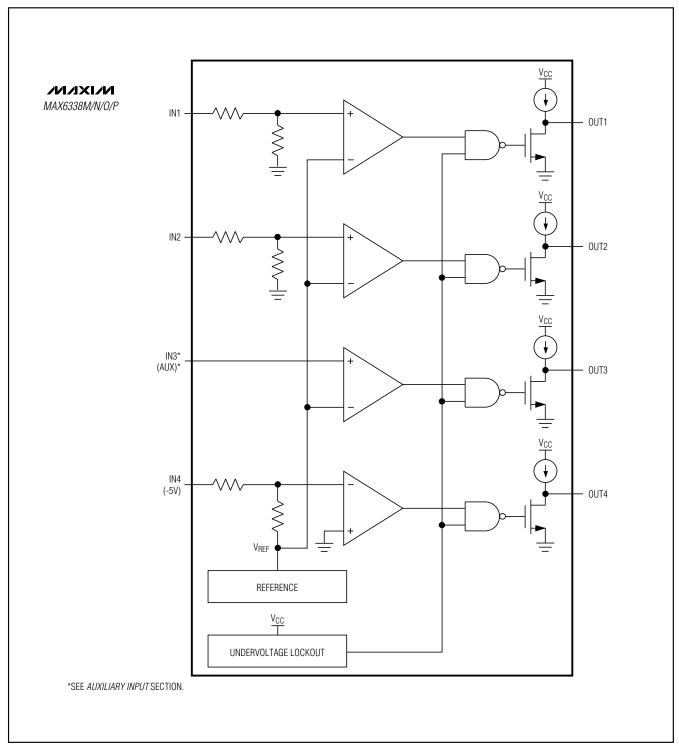


Figure 1. Functional Diagram

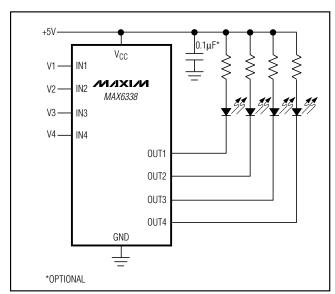


Figure 2. Quad Undervoltage Detector with LED Indicators

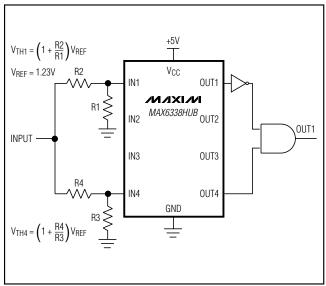


Figure 4. Window Detection

output toggles in one direction or the other. These resistors are not required when using the MAX6338 because hysteresis is built into the device. MAX6338 hysteresis is typically 0.3%.

Undervoltage Detection Circuit

The open-drain outputs of the MAX6338 can be configured to detect an undervoltage condition. Figure 2 shows a configuration where a low at a comparator output indicates an undervoltage condition, which in turn causes an LED to light.

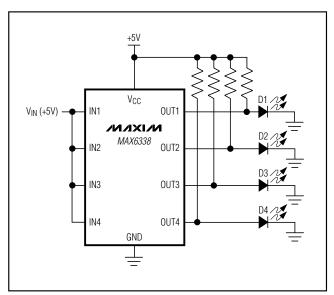


Figure 3. V_{CC} Bar Graph Monitoring

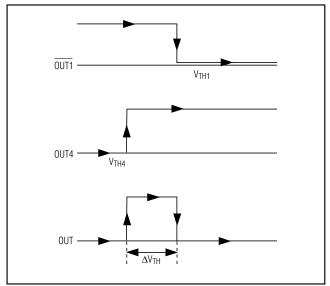


Figure 5. Output Response of Window Detector Circuit

The MAX6338 can also be used in applications such as system supervisory monitoring, multivoltage level detection, and $V_{\rm CC}$ bar graph monitoring (Figure 3).

Window Detection

A window detector circuit uses two auxiliary inputs in a configuration such as the one shown in Figure 4. External resistors R1–R4 set the two threshold voltages (V_{TH1} and V_{TH4}) of the window detector circuit. Window width (Δ V_{TH}) is the difference between the threshold voltages (Figure 5).

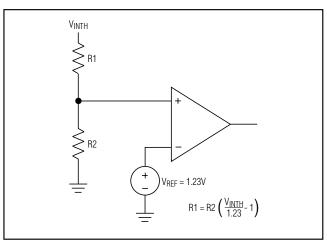


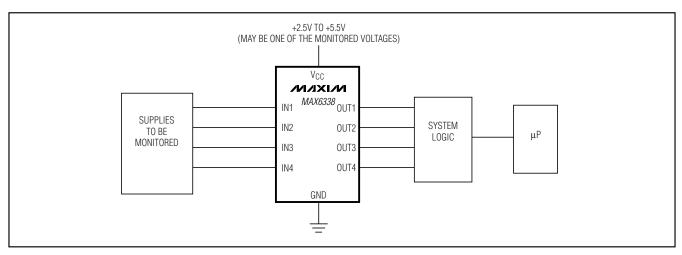
Figure 6. Setting the Auxiliary Monitor

Auxiliary Input

The adjustable voltage monitor is comparable to an internal reference of 1.23V as shown in Figure 6. To set the desired trip level of monitored supply, VINTH, choose: R1 = R2 [(VINTH / 1.23) - 1)]. For example, for a voltage detection at 4.5V (assume R2 = $100k\Omega$), R1 = $265k\Omega$.

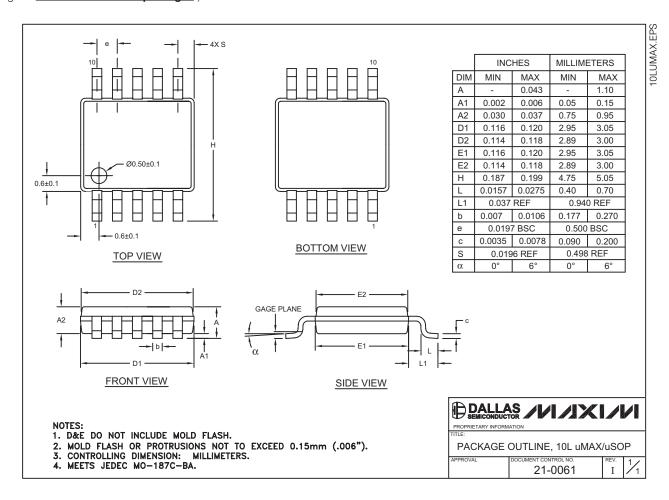
Unused Inputs

The unused inputs (except the auxiliary) are internally connected to ground through the lower resistors of the threshold-setting resistor pairs. The auxiliary (AUX) input, however, must be connected to either ground or VCC if unused.


Power-Supply Bypassing and Grounding

The MAX6338 operates from a single +2.5V to +5.5V supply. In noisy applications, connect a $0.1\mu F$ capacitor on the supply voltage line close to V_{CC} pin for bypassing.

Chip Information


TRANSISTOR COUNT: 620 PROCESS: BICMOS

Typical Operating Circuit

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9