

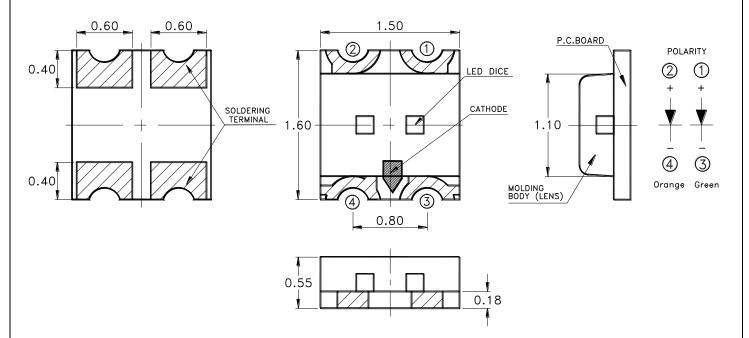
Spec No.: DS22-2007-0386 Effective Date: 12/11/2007

Revision: -

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4



Property of Lite-On Only

Features

- * Meet ROHS, Green Product.
- * Dual color chip LED.
- * Ultra bright AlInGaP Chip LED.
- * Package in 8mm tape on 7" diameter reels.
- * Compatible with automatic placement equipment.
- * Compatible with infrared and vapor phase reflow solder process.
- * EIA STD package.
- * I.C. compatible.

Package Dimensions

Devices

Part No.	Lens	Source Color	Pin Assignment
LTST-C195KGKFKT	Water Clear	AlInGaP Green	1,3
LISI-CI93KGKFKI	water Clear	AllnGaP Orange	2,4

Notes:

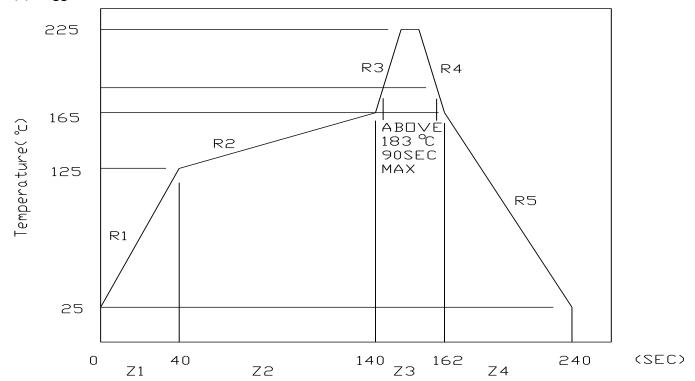
- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.10 mm (.004") unless otherwise noted.

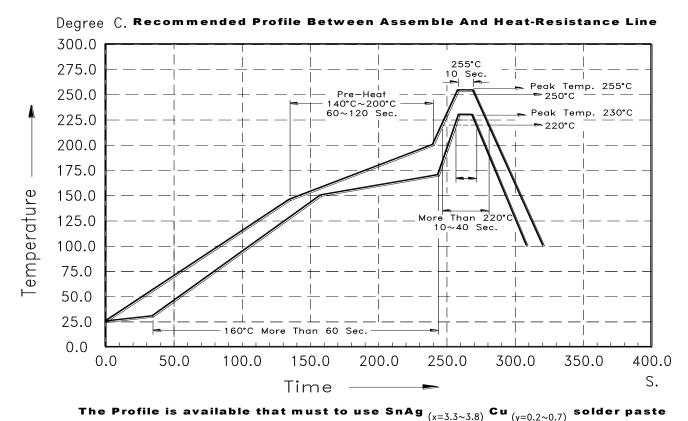
Part No.: LTST-C195KGKFKT Page: 1 of 11

Property of Lite-On Only

Absolute Maximum Ratings At Ta=25°C

Parameter	LTST-C19	Unit		
Farameter	Green	Green Orange		
Power Dissipation	75	75	mW	
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	80	80	mA	
DC Forward Current	30	30	mA	
Derating Linear From 25 °C	0.4	0.4	mA/°C	
Reverse Voltage	5	5	V	
Operating Temperature Range	-30°C to +85°C			
Storage Temperature Range	-40°C to + 85°C			
Infrared Soldering Condition	260°C For 5 Seconds			


Part No.: LTST-C195KGKFKT Page: of 11


Property of Lite-On Only

Suggestion Profile:

(1) Suggestion IR Reflow Profile For Normal Process

(2) Suggestion IR Reflow Profile For Pb Free Process

Part No.: LTST-C195KGKFKT

Page:

of

3

11

Property of Lite-On Only

Electrical / Optical Characteristics At Ta=25°C

Danamatan	Symbol		LTST-C195KGKFKT		TT '4	Test Condition	
Parameter	Symbol		Green	Orange	Unit	Test Condition	
		MIN.	18.0	45.0			
Luminous Intensity	IV	TYP.	35.0	90.0	mcd	IF =20mA Note 1	
		MAX.					
Viewing Angle	201/2	TYP.	130	130	deg	Note 2 (Fig.6)	
Peak Emission Wavelength	λΡ	TYP.	574	611	nm	Measurement @Peak (Fig.1)	
Dominant Wavelength	λd	TYP.	571	605	nm	IF =20mA Note 3	
Spectral Line Half-Width	Δλ	TYP.	15	17	nm		
Forward Voltage	VF	TYP.	2.0	2.0	V	IF =20mA	
Polward Voltage	V I	MAX.	2.4	2.4	V	II –20IIIA	
Reverse Current	IR	MAX.	10	10	μА	VR = 5V	
Capacitance	С	TYP.	40	40	PF	VF=0, f=1MHZ	

Notes: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.

- 2. θ 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength, λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Part No.: LTST-C195KGKFKT Page: 4 of 11

Property of Lite-On Only

Bin Code List

Luminous Intensity	Color: Green, Unit: mcd@20mA		
Bin Code	Min.	Max.	
M	18.0	28.0	
N	28.0	45.0	
P	45.0	71.0	

Tolerance on each Intensity bin is +/-15%

Luminous Intensity	Color: Orange, Unit: mcd@20mA		
Bin Code	Min.	Max.	
Р	45.0	71.0	
Q	71.0	112.0	
R	112.0	180.0	
S	180.0	280.0	

Tolerance on each Intensity bin is +/-15%

Part No.: LTST-C195KGKFKT Page: 5 of 11

Property of Lite-On Only

(25°C Ambient Temperature Unless Otherwise Noted)

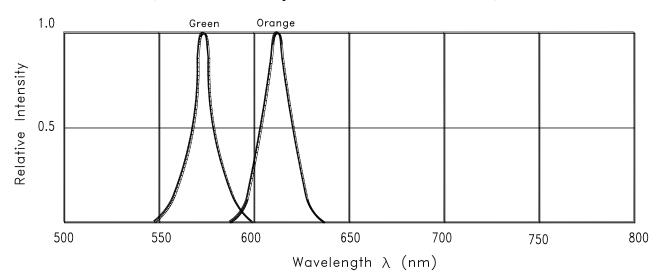


Fig.1 RELATIVE INTENSITY VS. WAVELENGTH

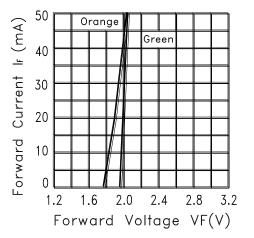


Fig.2 FORWARD CURRENT VS.
FORWARD VOLTAGE

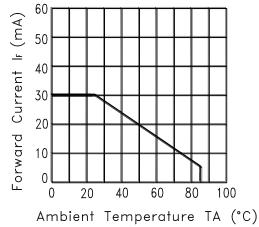


Fig.3 FORWARD CURRENT
DERATING CURVE

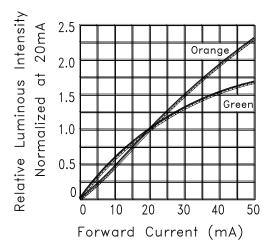


Fig.4 RELATIVE LUMINOUS
INTENSITY VS. FORWARD CURRENT

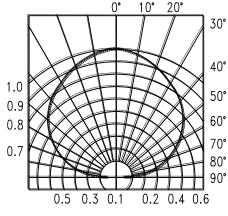


Fig.6 SPATIAL DISTRIBUTION

Part No.: LTST-C195KGKFKT

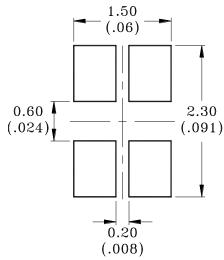
Page:

of

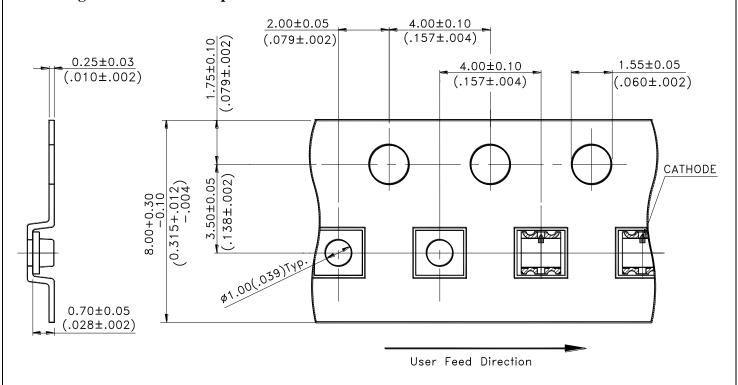
6

11

BNS-OD-C131/A4



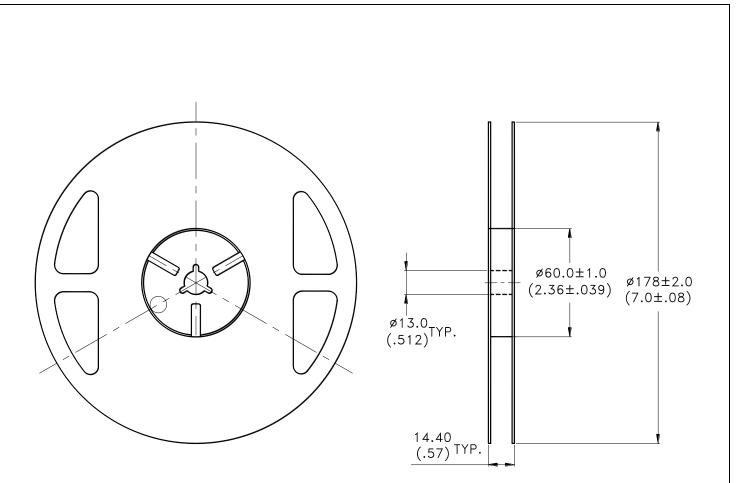
Property of Lite-On Only


Cleaning

Do not use unspecified chemical liquid to clean LED they could harm the package. If clean is necessary, immerse the LED in ethyl alcohol or in isopropyl alcohol at normal temperature for less one minute.

Suggest Soldering Pad Dimensions

Package Dimensions Of Tape And Reel


Notes:

1. All dimensions are in millimeters (inches).

Part No.: LTST-C195KGKFKT	Page:	7	of	11		
---------------------------	-------	---	----	----	--	--

Property of Lite-On Only

Notes:

- 1. Empty component pockets sealed with top cover tape.
- 2. 7 inch reel-4000 pieces per reel.
- 3. Minimum packing quantity is 500 pcs for remainders.
- 4. The maximum number of consecutive missing lamps is two.
- 5. In accordance with ANSI/EIA 481-1-A-1994 specifications.

Part No.: LTST-C195KGKFKT Page: 8 of 11

Property of Lite-On Only

CAUTIONS

1. Application

The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications). Consult Liteon's Sales in advance for information on applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices).

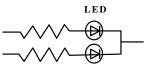
2. Storage

The storage ambient for the LEDs should not exceed 30°C temperature or 70% relative humidity. It is recommended that LEDs out of their original packaging are IR-reflowed within one week. For extended storage out of their original packaging, it is recommended that the LEDs be stored in a sealed container with appropriate desiccant, or in a desiccators with nitrogen ambient. LEDs stored out of their original packaging for more than a week should be baked at about 60 deg C for at least 24 hours before solder assembly.

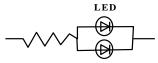
3. Cleaning

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED if necessary.

4. Soldering


Recommended soldering conditions:

Reflow soldering		Soldering iron		
1	120~150°C 120 sec. Max. 260°C Max. 5 sec. Max.	Soldering time	300°C Max. 3 sec. Max. (one time only)	


5. Drive Method

An LED is a current-operated device. In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application, it is recommended that a current limiting resistor be incorporated in the drive circuit, in series with each LED as shown in Circuit A below.

Circuit model A

Circuit model B

- (A) Recommended circuit.
- (B) The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs.

6. ESD (Electrostatic Discharge)

Static Electricity or power surge will damage the LED.

Suggestions to prevent ESD damage:

- Use of a conductive wrist band or anti-electrostatic glove when handling these LEDs.
- All devices, equipment, and machinery must be properly grounded.
- Work tables, storage racks, etc. should be properly grounded.
- Use ion blower to neutralize the static charge which might have built up on surface of the LED's plastic lens as a result of friction between LEDs during storage and handling.

Property of Lite-On Only

ESD-damaged LEDs will exhibit abnormal characteristics such as high reverse leakage current, low forward voltage, or "no lightup" at low currents.

To verify for ESD damage, check for "lightup" and Vf of the suspect LEDs at low currents. The Vf of "good" LEDs should be >2.0 V@0.1 mA for InGaN product and >1.4 V@0.1 mA for AlInGaP product.

7. Reliability Test

Classification	Test Item	Test Condition	Reference Standard
	Operation Life	Ta= Under Room Temperature As Per Data Sheet Maximum Rating *Test Time= 1000HRS (-24HRS,+72HRS)*@20mA.	MIL-STD-750D:1026 (1995) MIL-STD-883D:1005 (1991) JIS C 7021:B-1 (1982)
Endurance Test	High Temperature High Humidity Storage	IR-Reflow In-Board, 2 Times Ta= 65±5°C,RH= 90∼95% *Test Time= 240HRS±2HRS	MIL-STD-202F:103B(1980) JIS C 7021:B-11(1982)
1000	High Temperature Storage	Ta= 105±5°C *Test Time= 1000HRS (-24HRS,+72HRS)	MIL-STD-883D:1008 (1991) JIS C 7021:B-10 (1982)
	Low Temperature Storage	Ta= -55±5°C *Test Time=1000HRS (-24HRS,+72H RS)	JIS C 7021:B-12 (1982)
	Temperature Cycling	$105^{\circ}\text{C} \sim 25^{\circ}\text{C} \sim -55^{\circ}\text{C} \sim 25^{\circ}\text{C}$ 30mins 5mins 30mins 5mins 10 Cycles	MIL-STD-202F:107D (1980) MIL-STD-750D:1051(1995) MIL-STD-883D:1010 (1991) JIS C 7021:A-4(1982)
	Thermal Shock	IR-Reflow In-Board, 2 Times $85 \pm 5^{\circ}\text{C} \sim -40^{\circ}\text{C} \pm 5^{\circ}\text{C}$ 10mins 10 Cycles	MIL-STD-202F:107D(1980) MIL-STD-750D:1051(1995) MIL-STD-883D:1011 (1991)
Environmental Test	Solder Resistance	T.sol= 260 ± 5 °C Dwell Time= 10 ± 1 secs	MIL-STD-202F:210A(1980) MIL-STD-750D:2031(1995) JIS C 7021:A-1(1982)
	IR-Reflow Normal Process	Ramp-up rate(183°C to Peak) +3°C/second max Temp. maintain at 125(±25)°C 120 seconds max Temp. maintain above 183°C 60-150 seconds Peak temperature range 235°C+5/-0°C Time within 5°C of actual Peak Temperature (tp) 10-30 seconds Ramp-down rate +6°C/second max	MIL-STD-750D:2031.2(1995) J-STD-020(1999)
	IR-Reflow Pb Free Process	Ramp-up rate(217° C to Peak) $+3^{\circ}$ C/ second max Temp. maintain at $175(\pm 25)^{\circ}$ C 180 seconds max Temp. maintain above 217° C 60-150 seconds Peak temperature range 260° C +0/-5 $^{\circ}$ C Time within 5 $^{\circ}$ C of actual Peak Temperature (tp) 20-40 seconds Ramp-down rate $+6^{\circ}$ C/second max	MIL-STD-750D:2031.2(1995) J-STD-020(1999)
	Solderability	T.sol= 235 ± 5 °C Immersion time 2 ± 0.5 sec Immersion rate 25 ± 2.5 mm/sec Coverage ≥95% of the dipped surface	MIL-STD-202F:208D(1980) MIL-STD-750D:2026(1995) MIL-STD-883D:2003(1991) IEC 68 Part 2-20 JIS C 7021:A-2(1982)

8. Others

The appearance and specifications of the product may be modified for improvement without prior notice.

Part No.: LTST-C195KGKFKT	Page:	10	of	11	
---------------------------	-------	----	----	----	--

Property of Lite-On Only

9. Suggested Checking List

Training and Certification

- 1. Everyone working in a static-safe area is ESD-certified?
- 2. Training records kept and re-certification dates monitored?

Static-Safe Workstation & Work Areas

- 1. Static-safe workstation or work-areas have ESD signs?
- 2. All surfaces and objects at all static-safe workstation and within 1 ft measure less than 100V?
- 3. All ionizer activated, positioned towards the units?
- 4. Each work surface mats grounding is good?

Personnel Grounding

- 1. Every person (including visitors) handling ESD sensitive (ESDS) items wears wrist strap, heel strap or conductive shoes with conductive flooring?
- 2. If conductive footwear used, conductive flooring also present where operator stand or walk?
- 3. Garments, hairs or anything closer than 1 ft to ESD items measure less than 100V*?
- 4. Every wrist strap or heel strap/conductive shoes checked daily and result recorded for all DLs?
- 5. All wrist strap or heel strap checkers calibration up to date? Note: *50V for Blue LED.

Device Handling

- 1. Every ESDS items identified by EIA-471 labels on item or packaging?
- 2. All ESDS items completely inside properly closed static-shielding containers when not at static-safe workstation?
- 3. No static charge generators (e.g. plastics) inside shielding containers with ESDS items?
- 4. All flexible conductive and dissipative package materials inspected before reuse or recycles?

Others

- 1. Audit result reported to entity ESD control coordinator?
- 2. Corrective action from previous audits completed?
- 3. Are audit records complete and on file?

Part No.: LTST-C195KGKFKT Page: 11 of 11

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Lite-On:

LTST-C195KGKFKT

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9