

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FAIRCHILD
 FOD3150
 High Noise Immunity, 1.0A Output Current, Gate Drive Optocoupler

Features

■ High noise immunity characterized by $20 \mathrm{kV} / \mu \mathrm{s}$ minimum common mode rejection
■ Use of P-channel MOSFETs at output stage enables output voltage swing close to the supply rail
■ Wide supply voltage range from 15 V to 30 V
■ Fast switching speed

- 500ns max. propagation delay
- 300ns max. pulse width distortion

■ Under Voltage LockOut (UVLO) with hysteresis

- Extended industrial temperate range, $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ temperature range
■ Safety and regulatory approvals
- UL1577, $5000 \mathrm{~V}_{\mathrm{RMS}}$ for 1 min .
- IEC60747-5-2

■ $>8.0 \mathrm{~mm}$ clearance and creepage distance (option ' T ')

Applications

■ Industrial inverter
■ Uninterruptible power supply

- Induction heating

■ Isolated IGBT/Power MOSFET gate drive

Description

The FOD3150 is a 1.0A Output Current Gate Drive Optocoupler, capable of driving most 800V/20A IGBT/MOSFET. It is ideally suited for fast switching driving of power IGBT and MOSFETs used in motor control inverter applications, and high performance power system.
It utilizes Fairchild's patented coplanar packaging technology, Optoplanar ${ }^{\circledR}$, and optimized IC design to achieve high noise immunity, characterized by high common mode rejection.
It consists of a gallium aluminum arsenide (AIGaAs) light emitting diode optically coupled to an integrated circuit with a high-speed driver for push-pull MOSFET output stage.

Related Resources

■ FOD3120, 2.5A Output Current, Gate Drive Optocoupler Datasheet
■ www.fairchildsemi.com/products/opto/

Functional Block Diagram

Note:
A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between pins 5 and 8 .

Package Outlines

Truth Table

LED	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \text { "Positive Going" } \\ \text { (Turn-on) } \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \text { "Negative Going" } \\ \text { (Turn-off) } \end{gathered}$	V_{0}
Off	0 V to 30 V	0 V to 30 V	Low
On	0V to 11V	0 V to 9.5 V	Low
On	11 V to 13.5 V	9.5 V to 12 V	Transition
On	13.5 V to 30 V	12 V to 30 V	High

Pin Definitions

Pin \#	Name	Description
1	NC	Not Connected
2	Anode	LED Anode
3	Cathode	LED Cathode
4	NC	Not Connected
5	$\mathrm{~V}_{\mathrm{EE}}$	Negative Supply Voltage
6	$\mathrm{~V}_{\mathrm{O} 2}$	Output Voltage 2 (internally connected to $\mathrm{V}_{\mathrm{O} 1}$)
7	$\mathrm{~V}_{\mathrm{O} 1}$	Output Voltage 1
8	$\mathrm{~V}_{\mathrm{CC}}$	Positive Supply Voltage

Safety and Insulation Ratings

As per IEC 60747-5-2. This optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Symbol	Parameter	Min.	Typ.	Max.	Unit
	Installation Classifications per DIN VDE 0110/1.89 Table 1 For Rated Main Voltage < 150Vrms		I-IV		
	For Rated Main Voltage < 300Vrms		I-IV		
	For Rated Main Voltage < 450Vrms		I-III		
	For Rated Main Voltage < 600Vrms		I-III		
	Climatic Classification		55/100/21		
	Pollution Degree (DIN VDE 0110/1.89)		2		
CTI	Comparative Tracking Index	175			
V_{PR}	Input to Output Test Voltage, Method b, $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}}$, 100\% Production Test with $\mathrm{tm}=1$ sec., Partial Discharge < 5pC	1669			
	Input to Output Test Voltage, Method a, $\mathrm{V}_{\text {IORM }} \times 1.5=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test with $\mathrm{tm}=60 \mathrm{sec}$.,Partial Discharge < 5 pC	1335			
$V_{\text {IORM }}$	Max Working Insulation Voltage	890			$V_{\text {peak }}$
$\mathrm{V}_{\text {IOTM }}$	Highest Allowable Over Voltage	6000			$V_{\text {peak }}$
	External Creepage	8			mm
	External Clearance	7.4			mm
	External Clearance (for Option T-0.4" Lead Spacing)	10.16			mm
	Insulation Thickness	0.5			mm
TCase	Safety Limit Values - Maximum Values Allowed in the Event of a Failure Case Temperature	150			${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {S,INPUT }}$	Input Current	25			mA
$\mathrm{P}_{\text {S,OUTPUT }}$	Output Power (Duty Factor $\leq 2.7 \%$)	250			mW
R_{IO}	Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$	10^{9}			Ω

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Value	Units
$\mathrm{T}_{\mathrm{STG}}$	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{OPR}}$	Operating Temperature	-40 to +100	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{SOL}}$	Lead Wave Solder Temperature (refer to page 19 for reflow solder profile)	260 for 10 sec	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{F}(\mathrm{AVG})}$	Average Input Current	25	mA
$\mathrm{~V}_{\mathrm{R}}$	Reverse Input Voltage	5	V
$\mathrm{I}_{\mathrm{O}(\text { PEAK })}$	Peak Output Current ${ }^{(1)}$	1.5	A
$\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	Supply Voltage	0 to 35	V
$\mathrm{~V}_{\mathrm{O}(\text { PEAK })}$	Peak Output Voltage	0 to V_{CC}	V
$\mathrm{t}_{\mathrm{R}(\mathrm{IN})}, \mathrm{t}_{\mathrm{F}(\mathrm{IN})}$	Input Signal Rise and Fall Time	500	ns
PD_{l}	Input Power Dissipation ${ }^{(2)(4)}$	45	mW
PD_{O}	Output Power Dissipation ${ }^{(3)(4)}$	250	mW

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Value	Units
T_{A}	Ambient Operating Temperature	-40 to +100	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	Power Supply	15 to 30	V
$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	Input Current (ON)	7 to 16	mA
$\mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}$	Input Voltage (OFF)	0 to 0.8	V

Isolation Characteristics

Apply over all recommended conditions, typical value is measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {ISO }}$	Input-Output Isolation Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R} . \mathrm{H} .<50 \%, \mathrm{t}=1.0 \mathrm{~min}$, $\mathrm{I}_{-\mathrm{O}} \leq 10 \mu \mathrm{~A}, 50 \mathrm{~Hz}(5)(6)$	5000			$\mathrm{~V}_{\mathrm{RMS}}$
$\mathrm{R}_{\mathrm{ISO}}$	Isolation Resistance	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{~V}(5)$		10^{11}		Ω
$\mathrm{C}_{\text {ISO }}$	Isolation Capacitance	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{~V}$, Freq $=1.0 \mathrm{MHz}^{(5)}$		1	pF	

Electrical Characteristics

Apply over all recommended conditions, typical value is measured at $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Ground}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	1.2	1.5	1.8	V
$\Delta\left(V_{F} / T_{A}\right)$	Temperature Coefficient of Forward Voltage			-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$B V_{R}$	Input Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	5			V
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VF}=0 \mathrm{~V}$		60		pF
IOH	High Level Output Current ${ }^{(1)}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-0.75 \mathrm{~V}$	0.2			A
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-4 \mathrm{~V}$	1.0			
$\mathrm{I}_{\text {OL }}$	Low Level Output Current ${ }^{(1)}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.75 \mathrm{~V}$	0.2			A
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+4 \mathrm{~V}$	1.0			
V_{OH}	High Level Output Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=-1 \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}-6 \mathrm{~V}$		V
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=-100 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V}$		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$		$\mathrm{V}_{\mathrm{EE}}+6 \mathrm{~V}$	$\mathrm{V}_{\mathrm{EE}}+4 \mathrm{~V}$	V
		$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{EE}}+0.1 \mathrm{~V}$	$\mathrm{V}_{\mathrm{EE}}+0.5 \mathrm{~V}$	
$\mathrm{I}_{\mathrm{CCH}}$	High Level Supply Current	$\mathrm{V}_{\mathrm{O}}=$ Open, $\mathrm{I}_{\mathrm{F}}=7$ to 16 mA		2.8	5	mA
$\mathrm{I}_{\text {CCL }}$	Low Level Supply Current	$\mathrm{V}_{\mathrm{O}}=$ Open, $\mathrm{V}_{\mathrm{F}}=0$ to 0.8 V		2.8	5	mA
$\mathrm{I}_{\text {FLH }}$	Threshold Input Current Low to High	$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$		2.3	5.0	mA
$\mathrm{V}_{\mathrm{FHL}}$	Threshold Input Voltage High to Low	$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$	0.8			V
$\mathrm{V}_{\text {UVLO+ }}$	Under Voltage Lockout Threshold	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$	11	12.7	13.5	V
$\mathrm{V}_{\text {UVLO- }}$		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$	9.5	11.2	12.0	V
UVLO HYS	Under Voltage Lockout Threshold Hysteresis			1.5		V

Switching Characteristics

Apply over all recommended conditions, typical value is measured at $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Ground}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time to Logic Low Output	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=7 \mathrm{~mA} \text { to } 16 \mathrm{~mA}, \\ & \mathrm{Rg}=20 \Omega, \mathrm{Cg}=10 \mathrm{nF}, \\ & \mathrm{f}=10 \mathrm{kHz}, \text { Duty Cycle }=50 \% \end{aligned}$	100	275	500	ns
$t_{\text {PLH }}$	Propagation Delay Time to Logic High Output		100	255	500	ns
PWD	Pulse Width Distortion, $\left\|t_{\text {PHL }}-t_{\text {PLH }}\right\|$			20	300	ns
PDD (Skew)	Propagation Delay Difference Between Any Two Parts or Channels, $\left(t_{\mathrm{PHL}}-\mathrm{t}_{\mathrm{PLH}}\right)^{(7)}$		-350		350	ns
t_{r}	Output Rise Time (10\% - 90\%)			60		ns
t_{f}	Output Fall Time (90\% - 10\%)			60		ns
tuVLO ON	UVLO Turn On Delay	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$		1.6		$\mu \mathrm{s}$
tuvLo OFF	UVLO Turn Off Delay	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$		0.4		$\mu \mathrm{s}$
$\mathrm{ICM}_{\mathrm{H}}$ \|	Common Mode Transient Immunity at Output High	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=7 \text { to } 16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=2000 \mathrm{~V}^{(8)} \end{aligned}$	20	50		kV/ $\mu \mathrm{s}$
\| CM_{L} \|	Common Mode Transient Immunity at Output Low	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=2000 \mathrm{~V}^{(9)} \end{aligned}$	20	50		kV/ $/ \mathrm{s}$

Notes:

1. Maximum pulse width $=10 \mu \mathrm{~s}$, maximum duty cycle $=0.2 \%$
2. Derate linearly above $87^{\circ} \mathrm{C}$, free air temperature at a rate of $0.77 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
3. No derating required across temperature range.
4. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings.
5. Device is considered a two terminal device: Pins 2 and 3 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
6. $5,000 \mathrm{~V}_{\mathrm{RMS}}$ for 1 minute duration is equivalent to $6,000 \mathrm{VAC}_{\mathrm{RMS}}$ for 1 second duration.
7. The difference between $t_{\text {PHL }}$ and $t_{\text {PLH }}$ between any two FOD3150 parts under same test conditions.
8. Common mode transient immunity at output high is the maximum tolerable negative $\mathrm{dVcm} / \mathrm{dt}$ on the trailing edge of the common mode impulse signal, Vcm , to assure that the output will remain high (i.e. $\mathrm{V}_{\mathrm{O}}>15.0 \mathrm{~V}$).
9. Common mode transient immunity at output low is the maximum tolerable positive $\mathrm{dVcm} / \mathrm{dt}$ on the leading edge of the common pulse signal, Vcm , to assure that the output will remain low (i.e. $\mathrm{V}_{\mathrm{O}}<1.0 \mathrm{~V}$).

Typical Performance Curves

Fig. 1 Output High Voltage Drop vs. Output High Current

Fig. 3 Output Low Voltage vs. Output Low Current

Fig. 5 Supply Current vs. Ambient Temperature

Fig. 2 Output High Voltage Drop vs. Ambient Temperature

Fig. 4 Output Low Voltage vs. Ambient Temperature

Fig. 6 Supply Current vs. Supply Voltage

Typical Performance Curves (Continued)

Fig. 7 Low to High Input Current Threshold vs.

Fig. 9 Propagation Delay vs. LED Forward Current

Fig. 11 Propagation Delay vs. Series Load Resistance

Fig. 8 Propagation Delay vs. Supply Voltage

Fig. 10 Propagation Delay vs. Ambient Temperature

Fig. 12 Propagation Delay vs. Load Capacitance

Typical Performance Curves (Continued)

Test Circuit

Figure 20. $\mathrm{IOL}_{\mathrm{OL}}$ Test Circuit

Figure 21. $\mathrm{IOH}_{\mathrm{OH}}$ Test Circuit

Test Circuit (Continued)

Figure 22. V_{OH} Test Circuit

Figure 23. V_{OL} Test Circuit

Test Circuit (Continued)

Figure 24. $\mathrm{I}_{\mathrm{CCH}}$ Test Circuit

Figure 25. $\mathrm{I}_{\mathrm{CCL}}$ Test Circuit

Test Circuit (Continued)

Figure 26. $\mathrm{I}_{\mathrm{FLH}}$ Test Circuit

Figure 27. $\mathrm{V}_{\mathrm{FHL}}$ Test Circuit

Figure 28. UVLO Test Circuit

Test Circuit (Continued)

Figure 29. $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{R}}$ and t_{F} Test Circuit and Waveforms

Ordering Information

Part Number	Package	Packing Method
FOD3150	DIP 8-Pin	Tube (50 units per tube)
FOD3150S	SMT 8-Pin (Lead Bend)	Tube (50 units per tube)
FOD3150SD	SMT 8-Pin (Lead Bend)	Tape and Reel (1,000 units per reel)
FOD3150V	DIP 8-Pin, IEC60747-5-2 option	Tube (50 units per tube)
FOD3150SV	SMT 8-Pin (Lead Bend), IEC60747-5-2 option	Tube (50 units per tube)
FOD3150SDV	SMT 8-Pin (Lead Bend), IEC60747-5-2 option	Tape and Reel (1,000 units per reel)
FOD3150T	DIP 8-Pin, 0.4" Lead Spacing	Tube (50 units per tube)
FOD3150TV	DIP 8-Pin, 0.4" Lead Spacing, IEC60747-5-2 option	Tube (50 units per tube)

Marking Information

Carrier Tape Specifications

Symbol	Description	Dimension in mm
W	Tape Width	16.0 ± 0.3
t	Tape Thickness	0.30 ± 0.05
P_{0}	Sprocket Hole Pitch	4.0 ± 0.1
D_{0}	Sprocket Hole Diameter	1.55 ± 0.05
E	Sprocket Hole Location	1.75 ± 0.10
F	Pocket Location	7.5 ± 0.1
P_{2}		2.0 ± 0.1
P	Pocket Pitch	12.0 ± 0.1
$\mathrm{~A}_{0}$	Pocket Dimensions	10.30 ± 0.20
$\mathrm{~B}_{0}$		10.30 ± 0.20
$\mathrm{~K}_{0}$		4.90 ± 0.20
$\mathrm{~W}_{1}$	Cover Tape Width	13.2 ± 0.2
d	Cover Tape Thickness	0.1 max
	Max. Component Rotation or Tilt	10°
R	Min. Bending Radius	30

Reflow Profile

- Peak reflow temperature: 260C (package surface temperature)
- Time of temperature higher than 183C for 160 seconds or less
- One time soldering reflow is recommended

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:
FOD3150SDV FOD3150SV FOD3150TV FOD3150V FOD3150 FOD3150S FOD3150SD FOD3150TSV FOD3150TSR2V

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:
105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»
Телефон: +7 495 668-12-70 (многоканальный)
Факс: +7 495 668-12-70 (доб.304)
E-mail: info@moschip.ru
Skype отдела продаж:
moschip.ru
moschip.ru_6
moschip.ru_4
moschip.ru_9

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

