20V to 250V Driver for High Power PIN Diode Switches

Rev. V1

Features

- 20 V to 250 V Back Bias in Off State
- 200 mA Series Diode Bias Current at $+25^{\circ} \mathrm{C}$
- 50 mA Shunt Diode Bias Current at $+25^{\circ} \mathrm{C}$
- Propagation Delay less than $8 \mu \mathrm{~s}$
- Low Quiescent Current Consumption
- 3 V or 5 V CMOS Logic Control
- 7 mm QFN-16LD Package
- Tape and Reel Packaging Available
- RoHS* Compliant and $260^{\circ} \mathrm{C}$ Reflow Compatible

Description

The MADR-010574 switch driver is designed to work with M/A-COM Technology Solutions high power and high voltage PIN diodes. This driver consists of two independently controlled drivers which are able to provide 200 mA series / 50 mA shunt current to a series/shunt, series/shunt SPDT PIN diode switch. The back bias voltage is configurable from 20 V to 250 V . High voltage level shifters are integrated so that it can be easily controlled by 3 V or 5 V CMOS logic. While consuming low quiescent current, this driver has a typical delay of less than $8 \mu \mathrm{~s}$ when driving 220 pF capacitor load. If needed, the switching speed can be improved by consuming more quiescent power.

This driver is packaged in a lead free 7 mm PQFN16LD package and is available in tape and reel packaging for high volume applications.

Ordering Information

Part Number	Package
MADR-010574-000100	Bulk Packaging
MADR-010574-0001TR	1000 piece Reel
MADR-010574-001SMB	 MA4P504-1072T Diodes

Functional Schematic

Pin Configuration ${ }^{1}$

Pin No.	Pin Name	Description
1	SH1	Shunt1
2	C1	Control Logic 1
3	I BIAS	Bias Voltage
4	SER1	Series1
5	N/C 2	No Connection
6	GND	Ground
7	GND	Ground
8	N/C	No Connection
9	SH2	Shunt2
10	V $_{\text {CC }}$	Control Voltage
11	C2	Control Logic 2
12	SER2	Series2
13	GND	Ground
14	N/C ${ }^{2}$	No Connection
15	N/C ${ }^{2}$	No Connection
16	VDD 17	Paddle
17	Drain Voltage	

1. The paddle of the QFN package should be tied to ground.
2. N/C pins (except Pin 15) can be grounded. The clearance from high voltage pins should be at least 0.8 mm . Pin 15 must be left open.
[^0]
20V to 250V Driver for High Power PIN Diode Switches

Rev. V1

Recommended Operating Conditions

Parameter	Test Conditions	Unit	Min.	Typ.	Max.
V_{cc}	Nominal $\mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V}$ Nominal $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	V	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 5.5 \end{aligned}$
$V_{D D}$	-	V	20	-	250
Control1, Control2 ${ }^{3}$	Logic "0" Logic "1"	V	$\begin{gathered} 0.0 \\ 0.7 \times \mathrm{V}_{\mathrm{CC}} \end{gathered}$	$\begin{aligned} & 0.0 \\ & \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{gathered} 0.3 \times V_{\mathrm{CC}} \\ V_{\mathrm{CC}} \end{gathered}$
Series1/Series2 Sinking Current ${ }^{4}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	mA	-	-	$\begin{aligned} & 300 \\ & 200 \\ & 150 \end{aligned}$
Shunt1/Shunt2 Sinking Current ${ }^{4}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	mA	-	-	$\begin{aligned} & 65 \\ & 55 \\ & 50 \end{aligned}$
$\mathrm{I}_{\text {BIAS }}{ }^{5,6}$	$+25^{\circ} \mathrm{C}$	$\mu \mathrm{A}$	2	6	150
Operating Temperature	-	${ }^{\circ} \mathrm{C}$	-40	+25	+85

3. Unused Controls should be either grounded or connected to $V_{c c}$. They should never be left open.
4. Refer to "Application Circuit: Driving SPDT Switch with MA4P504-1072T Pin Diodes" for configuration of diode bias currents.
5. This sinking bias current is necessary for normal driver operation. The easiest way is to connect a 0402 resistor $R_{\text {BIAS }}$ between Pin $V_{C C}$ and Pin $I_{\text {BIAS. }}$ Then $I_{\text {BIAS }}$ can be calculated by: $\mathrm{I}_{\text {BIAS }}=\left(\mathrm{V}_{\mathrm{CC}}-0.6\right) /\left(500+\mathrm{R}_{\mathrm{BIAS}}\right)$
6. Refer to graph "Typ. Ton Driving 220 pF Caps vs. IBIAS" on page 3 and the chart "Typ. IDD vs. IBIAS at $25^{\circ} \mathrm{C}$ " on page 4 for the tradeoff between switching speed and power consumption.

Absolute Maximum Ratings ${ }^{7,8}$

Parameter	Absolute Maximum
V_{CC}	-0.5 V to +7 V
$V_{D D}$	-0.5 V to 275 V
C1, C2 (Logic)	-0.5 V to 7 V
Series1/Series2 Sinking Current $\begin{aligned} & -40^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	550 mA 450 mA 350 mA
$\begin{gathered} \text { Shunt1/Shunt2 Sinking Current } \\ -40^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +85^{\circ} \mathrm{C} \end{gathered}$	150 mA 150 mA 100 mA
Series/Shunt Outputs Sourcing Current	25 mA
$\mathrm{I}_{\text {BIAS }}$	$500 \mu \mathrm{~A}$
ESD HBM Rating	$>1 \mathrm{kV}$
Operating Temperature	-40 to $+125^{\circ} \mathrm{C}$
Storage Temperature	-55 to $+150^{\circ} \mathrm{C}$

7. M/A-COM Technology Solutions does not recommend sustained operation near these survivability limits.
8. Exceeding any one or combination of these limits may cause permanent damage to this device.

Truth Table ${ }^{9}$

C1	C2	Series1	Shunt1	Series2	Shunt2
0	0	Low	High	Low	High
0	1	Low	High	High	Low
1	0	High	Low	Low	High
1	1	High	Low	High	Low

9. The actual voltage levels for "Low" and "High" are dependent on the current load to the driver. They can be estimated from the driver on resistance.

Powering On/Off Sequence:

$V_{D D}$ should be turned on after $V_{C C}$, and the rise time of $V_{D D}$ should be slower than $2.5 \mu \mathrm{~s}$. When powering off, V_{DD} should be turned off before V_{CC}.

20V to 250V Driver for High Power PIN Diode Switches

Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=250 \mathrm{~V}, \mathrm{I}_{\mathrm{BIAS}}=6 \mu \mathrm{~A}^{10}$

Parameter	Test Conditions	Unit	Min.	Typ.	Max.
Quiescent Supply Currents	$\begin{aligned} & V_{\mathrm{CC}}(3.3 \mathrm{~V})^{11} \\ & \mathrm{~V}_{\mathrm{DD}}(250 \mathrm{~V}) \end{aligned}$	$\mu \mathrm{A}$	-	$\begin{gathered} 6 \\ 25 \end{gathered}$	$\begin{aligned} & 10 \\ & 37 \end{aligned}$
Control Input Leakage Current	-	$\mu \mathrm{A}$	-	-	1
Series Pull-down FET On Resistance	200 mA Load	Ω	-	9	11.4
Shunt Pull-down FET On Resistance	50 mA Load	Ω	-	26	30
Switching Speed Driving 220pF Caps: Series ${ }^{12}$ Ton Toff Tr Tf	50\% CTL to 95\% Voltage 50\% CTL to 5\% Voltage 10\% - 90% 90\% - 10\%	$\mu \mathrm{s}$	-	$\begin{gathered} 6.2 \\ 0.22 \\ 5.1 \\ 0.1 \end{gathered}$	-
Switching Speed Driving 220pF Caps: Shunt ${ }^{12}$ $\mathrm{~T}_{\text {ON }}$ $\mathrm{T}_{\text {OFF }}$ Tr Tf	50\% CTL to 95\% Voltage 50% CTL to 5\% Voltage 10\% - 90% 90\% - 10\%	$\mu \mathrm{s}$	-	$\begin{gathered} 3.1 \\ 0.2 \\ 2.6 \\ 0.08 \end{gathered}$	-

10. The parameters were measured with $500 \mathrm{k} \Omega \mathrm{R}_{\text {BIAS }}$ connecting between pin $\mathrm{V}_{C C}$ and pin $\mathrm{I}_{\text {BIAS }}$.
11. $I_{B A S}$ is included in the quiescent V_{CC} current due to the bias configuration.
12. Switching parameters were measured driving 220 pF capacitors with no current load. Controls C 1 and C 2 were tied together. It will be faster when C 2 is inverted from C1, which is case driving a SPDT switch.

Typ. Ton Driving 220pF Caps vs VDD

$$
\text { VCC }=3.3 \mathrm{~V} \text {, IBIAS }=6 \mu \mathrm{~A}, 25^{\circ} \mathrm{C}
$$

Typ. Ton Driving 220pF Caps vs IbIAs $V C C=3.3 \mathrm{~V}, \mathrm{VDD}=250 \mathrm{~V}, 25^{\circ} \mathrm{C}$

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macom.com for additional data sheets and product information.

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

20V to 250V Driver for High Power PIN Diode Switches

Performance Driving M/A-COM MA4P504-1072T PIN Diode SPDT Switch ${ }^{13}$

Typ. Ton (50\% Ctl to 90\% RF) vs. VDD
$\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{IBIAS}=6 \mu \mathrm{~A}$
Iseries $=200 \mathrm{~mA}$, Ishunt $=50 \mathrm{~mA}$

Typ. IDD vs IbIAs at $25^{\circ} \mathrm{C}$

Typ. Toff (50\% Ctl to 10\% RF)
VDD $=250 \mathrm{~V}, \mathrm{VCC}=3.3 \mathrm{~V}$, IBIAS $=6 \mu \mathrm{~A}$

- Iseries $=50 \mathrm{~mA}$,Ishunt $=10 \mathrm{~mA}$

Typ. Toff ($50 \% \mathrm{CtI}$ to $10 \% \mathrm{RF}$) vs. VDD
$\mathrm{VCC}=3.3 \mathrm{~V}$, IBIAS $=6 \mu \mathrm{~A}$
Iseries $=200 \mathrm{~mA}$, Ishunt $=50 \mathrm{~mA}$

13. The switch is a series/shunt, series/shunt SPDT switch using four M/A-COM MA4P504-1072T PIN diodes. Schematic is on next page. Switching parameters were measured with 500 MHz 20W CW RF signal.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.
M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Application Circuit: Driving SPDT Switch with MA4P504-1072T PIN Diodes ${ }^{14}$

14. This is the schematic of MADR-010547-001SMB. The frequency range for this application circuit is 200 MHz to 500 MHz . The bias current for the series diodes is 200 mA . The bias current for the shunt diodes is 50 mA . The recommended inductors are Coil Craft 0603LS-181XJLB for both current and frequency considerations. For different frequency applications, both capacitors and inductors should be adjusted accordingly.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.
M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

20V to 250V Driver for High Power PIN Diode Switches

Recommended PCB

Parts List

Part	Value	Size
C5	$0.01 \mu \mathrm{~F}, 500 \mathrm{~V}$	0805
C6 - C12	$100 \mathrm{pF}, 500 \mathrm{~V}$	0805
C13 - C15	$0.1 \mu \mathrm{~F}, 16 \mathrm{~V}$	0402
L1 - L8	180 nH	0603
R1	$1.5 \Omega, 1 \mathrm{~W}$	2512
R2	$15 \Omega, 0.5 \mathrm{~W}$	1206
R3	$499 \mathrm{~K} \Omega, 1 / 16 \mathrm{~W}$	0402
D1 - D4	MA4P504-1072	

Footprint

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macom.com for additional data sheets and product information.

20V to 250V Driver for High Power PIN Diode Switches

Lead Free 7mm PQFN-16LD ${ }^{\dagger}$

${ }^{\dagger}$ This is not a JEDEC standard package. Please refer to Application Note for footprint and lead-free solder reflow recommendations.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Silicon Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information. information contained herein without notice.

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:
105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»
Телефон: +7 495 668-12-70 (многоканальный)
Факс: +7 495 668-12-70 (доб.304)
E-mail: info@moschip.ru
Skype отдела продаж:
moschip.ru
moschip.ru_6
moschip.ru_4
moschip.ru_9

[^0]: * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.
 - North America Tel: 800.366.2266 / Fax: 978.366.2266
 - Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
 - Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

 Visit www.macom.com for additional data sheets and product information.

